login
Number of tilings of a 6 X n rectangle using dominoes and trominoes (of any shape).
2

%I #7 Jul 29 2023 20:29:30

%S 1,2,108,3540,110017,3710880,118624712,3899306587,127878970311,

%T 4189728321930,137392239151483,4503668012714799,147644019131706564,

%U 4840231631630848470,158674875169222078088,5201817700816057866925,170529855092392357493695,5590439274972944626211771

%N Number of tilings of a 6 X n rectangle using dominoes and trominoes (of any shape).

%H Alois P. Heinz, <a href="/A364616/b364616.txt">Table of n, a(n) for n = 0..660</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Domino_(mathematics)">Domino (mathematics)</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Tromino">Tromino</a>

%e a(1) = 2:

%e ._. ._.

%e | | | |

%e |_| | |

%e | | |_|

%e |_| | |

%e | | | |

%e |_| |_| .

%Y Column k=6 of A364457.

%K nonn

%O 0,2

%A _Alois P. Heinz_, Jul 29 2023