login
Number of partitions of [n] with distinct block sizes such that each block contains exactly one block size different from its own as an element.
2

%I #17 Jul 18 2023 08:57:34

%S 1,0,0,1,1,4,11,24,52,226,969,2281,8960,29898,193202,1075509,3346852,

%T 14280775,75858992,332978617,2839114204,19507400962,75453432614,

%U 383685116089,2030801987312,14025840725149,77948290561659,884660446815877,7273497958681824

%N Number of partitions of [n] with distinct block sizes such that each block contains exactly one block size different from its own as an element.

%H Alois P. Heinz, <a href="/A364282/b364282.txt">Table of n, a(n) for n = 0..707</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a>

%e a(3) = 1: 13|2.

%e a(4) = 1: 124|3.

%e a(5) = 4: 1235|4, 124|35, 125|34, 13|245.

%e a(6) = 11: 12346|5, 1235|46, 1236|45, 1256|34, 14|2356, 145|2|36, 14|256|3, 146|2|35, 15|246|3, 16|245|3, 156|2|34.

%p f:= proc(n) option remember; `if`(n<2, 1-n, (n-1)*(f(n-1)+f(n-2))) end:

%p a:= proc(m) option remember; local b; b:=

%p proc(n, i, p) option remember; `if`(i*(i+1)/2<n, 0,

%p `if`(n=0, p!*f(m-p), b(n, i-1, p)+b(n-i, min(n-i, i-1), p-1)/(i-1)!))

%p end: b(m$3)

%p end:

%p seq(a(n), n=0..30);

%Y Cf. A000110, A000166, A007837, A364207, A363881, A364278, A364283.

%K nonn

%O 0,6

%A _Alois P. Heinz_, Jul 17 2023