login
Dirichlet inverse of A364255.
4

%I #10 Jul 17 2023 17:12:33

%S 1,-2,-3,0,-1,6,-1,0,0,2,-1,0,-1,2,5,0,-1,0,-1,0,3,2,-1,0,-4,2,26,0,

%T -1,-10,-1,0,3,2,-3,0,-1,2,5,0,-1,-6,-1,0,-6,2,-1,0,0,8,5,0,-1,-52,-9,

%U 0,3,2,-1,0,-1,2,8,0,1,-6,-1,0,3,6,-1,0,-1,2,18,0,-5,-10,-1,0,-102,2,-1,0,-3,2,5,0,-1,12

%N Dirichlet inverse of A364255.

%H Antti Karttunen, <a href="/A364257/b364257.txt">Table of n, a(n) for n = 1..20000</a>

%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>

%F a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A364255(n/d) * a(d).

%o (PARI)

%o \\ Needs also code from A364255:

%o memoA364257 = Map();

%o A364257(n) = if(1==n,1,my(v); if(mapisdefined(memoA364257,n,&v), v, v = -sumdiv(n,d,if(d<n,A364255(n/d)*A364257(d),0)); mapput(memoA364257,n,v); (v)));

%Y Cf. A163511, A364255.

%Y Cf. A323239 (read modulo 2).

%K sign

%O 1,2

%A _Antti Karttunen_, Jul 17 2023