A363758 Maximum Sum of Digits
 Kevin Ryde, March 2024

A363758 is the maximum sum of digits for an n digit number in fractional base $4 / 3$. The following is a plot of $a(n) / n$ which is the mean digit in such a number.

Initial terms $a(1 \ldots 3)$ are omitted. Their means are $3,3,2+\frac{2}{3}$.
The peak (so far) in the middle of the plot is at $n=120$ which has sum of digits $a(n)=277$ for mean $277 / 120=2.308 \ldots$.

If digits were random $0,1,2,3$ then the mean would be 1.5. Some experiments with small n suggest this is roughly so taken over all numbers of n digits.

The numerical maximum number with n digits uses only $1,2,3$ (and ends 3). If those were random then their mean would be 2 . Some experiments suggest this is roughly so for small n.

The plot up to the middle peak $n=120$ might have looked like continuing to grow, but beyond that the means drift down (so far) towards about 2.28.

