%I #14 Jul 12 2023 01:02:17
%S 1,4,11,46,127,596,1717,7792,24806,108450,352717,1563914,5200301,
%T 22539046,77876117,331982444,1166803111,4945693769,17672631901,
%U 74053888812,269344740908,1118110015874,4116715363801,16984153623296,63205318063252,259049084680612
%N a(n) = Sum_{d|n} (n/d)^(d-1) * binomial(d+n-1,n).
%F a(n) = [x^n] Sum_{k>0} x^k/(1 - k*x^k)^(n+1).
%t a[n_] := DivisorSum[n, (n/#)^(#-1) * Binomial[# + n - 1, n] &]; Array[a, 25] (* _Amiram Eldar_, Jul 12 2023 *)
%o (PARI) a(n) = sumdiv(n, d, (n/d)^(d-1)*binomial(d+n-1, n));
%Y Cf. A167531, A363642, A363645.
%Y Cf. A343548, A363661, A363664.
%K nonn
%O 1,2
%A _Seiichi Manyama_, Jun 14 2023