login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363404
G.f. satisfies A(x) = exp( Sum_{k>=1} (A(x^k) + A(w*x^k) + A(w^2*x^k))/3 * x^k/k ), where w = exp(2*Pi*i/3).
2
1, 1, 1, 1, 2, 2, 2, 4, 5, 5, 10, 12, 13, 26, 34, 36, 73, 96, 104, 210, 288, 315, 638, 881, 974, 1975, 2777, 3089, 6276, 8895, 9970, 20272, 29000, 32668, 66508, 95703, 108347, 220771, 319483, 363141, 740615, 1076331, 1227826, 2505979, 3655912, 4183309, 8544123, 12504292, 14347462
OFFSET
0,5
LINKS
FORMULA
A(x) = Sum_{k>=0} a(k) * x^k = 1/Product_{k>=0} (1-x^(3*k+1))^a(3*k).
A(x) * A(w*x) * A(w^2*x) = A(x^3).
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} ( Sum_{d|k and d==1 mod 3} d * a(d-1) ) * a(n-k).
PROG
(PARI) seq(n) = my(w=exp(2*Pi*I/3), A=1); for(i=1, n, A=exp(sum(k=1, i, sum(m=0, 2, subst(A, x, w^m*x^k))/3*x^k/k)+x*O(x^n))); apply(round, Vec(A));
CROSSREFS
Cf. A363336.
Sequence in context: A296690 A074765 A029045 * A152432 A308856 A308922
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 31 2023
STATUS
approved