OEIS A362670

RICHARD J. MATHAR

Abstract

Bounds of the search for solutions of the side lengths a and c for isosceles triangles corresponding to integer radii r in [2, A362670] are developped.

1. Parameters

Sequence A362670 is concerned with isosceles triangles with two sides of length a, one side of length c with the constraint $a<c$. The radius of the incircle is

$$
\begin{equation*}
r=\frac{c}{2} \sqrt{\frac{2 a-c}{2 a+c}} \tag{1}
\end{equation*}
$$

We search for solutions r with three positive integers r, a and c.
Remark 1. There are no integer solutions for the equilateral triangle ($a=c$), because then (1) requires $r=c /(2 \sqrt{ } 3)$, but $\sqrt{ } 3$ is an irrational number $[1,3]$.

2. REGions

To keep the value of r in (1) positive, the numerator in the square root must be positive, and combined with the constraint by the definition of the sequence

$$
\begin{equation*}
c / 2<a<c . \tag{2}
\end{equation*}
$$

Squaring (1) gives

$$
\begin{equation*}
4(2 a+c) r^{2}=c^{2}(2 a-c) \tag{3}
\end{equation*}
$$

This is a linear equation for a :

$$
\begin{equation*}
a=\frac{c\left(4 r^{2}+c^{2}\right)}{2\left(c^{2}-4 r^{2}\right)}=-\frac{c}{2}+\frac{c^{2}}{2(c+2 r)}+\frac{c^{2}}{2(c-2 r)} \tag{4}
\end{equation*}
$$

Remark 2. This means that all c are even: if c were odd, $4 r^{2}+c^{2}$ were odd, the product $c\left(4 r^{2}+c^{2}\right)$ were odd, and division through 2 could not yield an integer a.

Equation (4) means that $a(c)$ has a pole at $c=2 r$ and that $\lim _{c \rightarrow \infty} a=c / 2$. So for constant r the function $a(c)$ starts high above the line $a=c$ right from $c=(2 r)^{+}$, crosses the line $a=c$ somewhere at $c>2 r$, and approaches the line $a=c / 2$ from above at large c. [It never crosses the line $a=c / 2$ because that would imply $r=0$ in (1).] The solutions $a(c)$ at fixed r look roughly as follows:

[^0]

The curve $a(c)$ can therefore be parametrized with

Definition 1.

$$
\begin{equation*}
\epsilon \equiv a-c / 2, \quad \epsilon>0 \tag{5}
\end{equation*}
$$

(4) becomes

$$
\begin{equation*}
\epsilon=\frac{4 c r^{2}}{(c+2 r)(c-2 r)} \tag{6}
\end{equation*}
$$

Since we are searching for integer a and even c in (5), ϵ must be integer, and therefore

$$
\begin{equation*}
\epsilon \geq 1 \tag{7}
\end{equation*}
$$

Combined with (6),

$$
\begin{equation*}
\frac{4 c r^{2}}{(c+2 r)(c-2 r)} \geq 1 \rightsquigarrow c \leq 2 r^{2}+2 r \sqrt{1+r^{2}} \tag{8}
\end{equation*}
$$

This is the upper limit for a numerical search of solutions; the lower limit is obtained from the constraint $\epsilon>0$ in (6):

$$
\begin{equation*}
2 r<c \leq 2 r^{2}+2 r \sqrt{1+r^{2}} \tag{9}
\end{equation*}
$$

Appendix A. Maple implementation

```
# @param r the positive integer parameter r
# @return True if r is an inradius for an isosceless triangle with 2 sides a,
# one side c, a and c integer.
# @author Richard J. Mathar
# @since 2023-06-27
isA362670 := proc(r)
    local c,a,cmax ;
    # upper search limit for c according to manuscript
    cmax := floor(2*r^2+2*r*sqrt(1+r^2)) ;
    # loop over possible side lenghts c
```

```
    for c from 2*r+2 to cmax by 2 do
            # associate side length a
            a := c*(4*r^2+c^2)/2/(c^2-4*r^2) ;
            # check that a is integer and in the range set by the sequence defn.
            if type(a,'integer') and a< c then
                        # print solultions (at most one for each r) ?
                    # printf("r=%d c=%d a=%d\n",r,c,a) ;
                    return true ;
    end if;
    end do:
    return false ;
end proc:
# print solutions in b-file style
n := 1:
for r from 3 do
    if isA362670(r) then
    printf("%d %d\n",n,r) ;
    n := n+1 ;
    end if;
end do:
```


References

1. Leonard Euler, Of square roots, and of irrational numbers resulting from them, Springer, 1972.
2. O. E. I. S. Foundation Inc., The On-Line Encyclopedia Of Integer Sequences, (2023), https://oeis.org/. MR 3822822
3. Ricardo A. Podestá, A geometric proof that $\sqrt{3}, \sqrt{5}$, and $\sqrt{7}$ are irrational, arXiv:2003.06627 (2020).

URL: http://www.mpia.de/~mathar
Hoeschstr. 7, 52372 Kreuzau, Germany

[^0]: Date: June 27, 2023.

