login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) = (-1)^(n-k)*binomial(n, k)*(k+3)^n, for n >= 0, and k = 0,1, ..., n. Coefficients of certain Sidi polynomials.
1

%I #17 Aug 02 2023 13:49:21

%S 1,-3,4,9,-32,25,-27,192,-375,216,81,-1024,3750,-5184,2401,-243,5120,

%T -31250,77760,-84035,32768,729,-24576,234375,-933120,1764735,-1572864,

%U 531441,-2187,114688,-1640625,9797760,-28824005,44040192,-33480783,10000000,6561,-524288,10937500,-94058496,403536070,-939524096,1205308188,-800000000,214358881

%N Triangle read by rows: T(n,k) = (-1)^(n-k)*binomial(n, k)*(k+3)^n, for n >= 0, and k = 0,1, ..., n. Coefficients of certain Sidi polynomials.

%C This is the member N = 2 of a family of signed triangles with row sums n! = A000142(n): T(N; n, k) = (-1)^(n-k)*binomial(n, k)*(k + N + 1)^n, for integer N, n >= 0 and k = 0, 1, ..., n. The row polynomials PS(N; n, z) = Sum_{k=0..n} T(N; n, k)*z^k = ((-1)^n/z^N)*D_{n,N+1,n}(z) in [Sidi 1980].

%C For N = -1, 0 and 1 see A258773(n, k), A075513(n+1, k) and (-1)^(n-k) * A154715(n, k), respectively.

%C The column sequences, for k = 0, 1, ..., 6 and n >= k, are A141413(n+2), (-1)^(n+1)*A018215(n) = 4*(-1)^(n+1)*A002697(n), 5^2*(-1)^n*A081135(n), (-1)^(n+1)*A128964(n-1) = 6^3*(-1)^(n+1)*A081144(n), 7^4*(-1)^n*A139641(n-4), 2^15*(-1)^(n+1)*A173155(n-5), 3^12*(-1)^n*A173191(n-6), respectively.

%C The e.g.f. of the triangle (see below) needs the exponential convolution (LambertW(-z)/(-z))^2 = Sum_{n>=0} c(2; n)*z^n/n!, where c(2; n) = Sum_{m=0..n} |A137352(n+1, m)|*2^m = A007334(n+2).

%C The row sums give n! = A000142(n).

%H Paolo Xausa, <a href="/A362353/b362353.txt">Table of n, a(n) for n = 0..5049</a> (rows 0..100 of the triangle, flattened)

%H Wolfdieter Lang, <a href="/A075513/a075513.pdf">On a Certain Family of Sidi Polynomials</a>, May 2023.

%H Avram Sidi, <a href="https://doi.org/10.1090/S0025-5718-1980-0572861-2">Numerical Quadrature and Nonlinear Sequence Transformations; Unified Rules for Efficient Computation of Integrals with Algebraic and Logarithmic Endpoint Singularities</a>, Math. Comp., 35 (1980), 851-874.

%F T(n, k) = (-1)^(n-k)*binomial(n, k)*(k + 3)^n, for n >= 0, k = 0, 1, ..., n.

%F O.g.f. of column k: (x*(k + 3))^k/(1 - (k + 3)*x)^(k+1), for k >= 0.

%F E.g.f. of column k: exp(-(k + 3)*x)*((k + 3)*x)^k/k!, for k >= 0.

%F E.g.f. of the triangle, that is, the e.g.f. of its row polynomials {PS(2;n,y)}_{n>=0}): ES(2;y,x) = exp(-3*x)*(1/3)*(d/dz)(W(-z)/(-z))^2, after replacing z by x*y*exp(-x), where W is the Lambert W-function for the principal branch. This becomes ES(2;y,x) = exp(-3*x)*exp(3*(-W(-z)))/(1 - (-W(-z)), with z = x*y*exp(-x).

%e The triangle T begins:

%e n\k 0 1 2 3 4 5 6 7

%e 0: 1

%e 1: -3 4

%e 2: 9 -32 25

%e 3: -27 192 -375 216

%e 4: 81 -1024 3750 -5184 2401

%e 5: -243 5120 -31250 77760 -84035 32768

%e 6: 729 -24576 234375 -933120 1764735 -1572864 531441

%e 7: -2187 114688 -1640625 9797760 -28824005 44040192 -33480783 10000000

%e ...

%e n = 8: 6561 -524288 10937500 -94058496 403536070 -939524096 1205308188 -800000000 2143588,

%e n = 9: -19683 2359296 -70312500 846526464 -5084554482 16911433728 -32543321076 36000000000 -21221529219 5159780352.

%t A362353row[n_]:=Table[(-1)^(n-k)Binomial[n,k](k+3)^n,{k,0,n}];Array[A362353row,10,0] (* _Paolo Xausa_, Jul 30 2023 *)

%Y Cf. A000142 (row sums), A075513, A154715, A258773.

%Y Columns k = 0..6 involve (see above): A002697, A007334, A018215, A081135, A081144, A128964, A137352, A139641, A141413, A173155, A173191.

%K sign,tabl,easy

%O 0,2

%A _Harlan J. Brothers_ and _Wolfdieter Lang_, Apr 27 2023

%E a(41)-a(44) from _Paolo Xausa_, Jul 31 2023