login
Decimal expansion of lambda, a constant arising in the analysis of the binary Euclidean algorithm.
2

%I #16 May 13 2023 13:55:19

%S 3,9,7,9,2,2,6,8,1,1,8,8,3,1,6,6,4,4,0,7,6,7,0,7,1,6,1,1,4,2,6,5,4,9,

%T 8,2,3,0,9,8

%N Decimal expansion of lambda, a constant arising in the analysis of the binary Euclidean algorithm.

%C See Brent (1999), p. 12, and Morris (2016), p. 79, where this constant is called zeta(1).

%C See A362149 for additional comments, references and links.

%H Richard P. Brent, <a href="https://doi.org/10.48550/arXiv.1303.2772">Further analysis of the binary Euclidean algorithm</a>, arXiv:1303.2772 [cs.DS], 1999, p. 12.

%H Ian D. Morris, <a href="https://doi.org/10.1016/j.aim.2015.12.008">A rigorous version of R. P. Brent's model for the binary Euclidean algorithm</a>, Advances in Mathematics, Vol. 290, 26 Feb. 2016, p. 79.

%F Equals (4*log(2)/Pi^2)/A362149 = 4*A118858/A362149.

%e 0.3979226811883166440767071611426549823098...

%Y Cf. A118858, A345987, A362149.

%K nonn,cons,hard,more

%O 0,1

%A _Paolo Xausa_, Apr 09 2023