%I #6 May 04 2023 14:57:38
%S 1,0,1,0,1,2,0,18,18,18,0,1606,1098,684,446,0,565080,263580,116370,
%T 55620,26430,0,734774776,225806940,68822910,24578010,9729090,3596762,
%U 0,3523091615568,680637057912,136498491360,34626926250,10819771830,3694824126,1111506858
%N Triangle read by rows: T(n,k) is the number of weakly connected simple digraphs on n labeled nodes with k strongly connected components.
%H Andrew Howroyd, <a href="/A361591/b361591.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50).
%e Triangle begins:
%e 1;
%e 0, 1;
%e 0, 1, 2;
%e 0, 18, 18, 18;
%e 0, 1606, 1098, 684, 446;
%e 0, 565080, 263580, 116370, 55620, 26430;
%e 0, 734774776, 225806940, 68822910, 24578010, 9729090, 3596762;
%e ...
%o (PARI) \\ Uses functions defined in A361455.
%o T(n)={my(e=2); [Vecrev(p) | p<-Vec(serlaplace(1 + log(U(e, 1/G(e, exp(y*log(U(e, 1/G(e, DigraphEgf(n, e))))))))))]}
%o { my(A=T(6)); for(i=1, #A, print(A[i])) }
%Y Column k=1 is A003030.
%Y Main diagonal is A082402.
%Y Row sums are A003027.
%Y The unlabeled version is A361587.
%Y Cf. A189898, A361455.
%K nonn,tabl
%O 0,6
%A _Andrew Howroyd_, May 04 2023