%I #7 Dec 05 2023 20:26:14
%S 0,1,4,12,34,99,308,1040,3820,15197,65060,297828,1449742,7468527,
%T 40555732,231335944,1381989864,8623700793,56078446596,379233142780,
%U 2662013133274,19362917621979,145719550012276,1133023004941248,9090156910550084,75161929739797493,639793220877941476
%N Antidiagonal sums of A361475.
%F a(n) = Sum_{k=2..n+2} (k^(n-k+2) - 1)/(k - 1).
%F a(n) ~ A026898(n).
%F a(n) = Sum_{k=0..n} k * A104878(n,k). - _Alois P. Heinz_, Dec 05 2023
%t A361475[n_,k_]:=(k^n-1)/(k-1); a[n_]:=Sum[A361475[n-k+2,k],{k,2,n+2}]; Array[a,27,0]
%Y Cf. A026898, A104878, A361475.
%K nonn
%O 0,3
%A _Stefano Spezia_, Mar 13 2023