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1 Introduction

The calculation presented here found its origin in a post on Mathstodon by Martin Epstein
[1]:

Most of the musical scales we care about have the “natural thirds” property: if
you take any three consecutive notes in the scale (with wraparound) then the
distance between the first and last is either 3 or 4 semitones - i.e. a minor or
major third. In the 12 tone system there are 33 scales with the natural thirds
property: 7 each for the modes of major, melodic minor, harmonic minor, and
harmonic major; +1 for whole tone, +2 for symmetric diminished, and +2 for
augmented. So s12 = 33. What can we say about sn?

We begin by considering a cyclically identified string of n squares �� · · ·�. Into these
n squares the numbers 0, 1, . . . , n − 1 will be placed in increasing order. These numbers
represent the ordered set of tones from which the scales will be built. We will colour a
square black when it is allowed, i.e. when the tone in that square will be included in the
scale. A white square represents a discarded tone, i.e. one excluded from the scale. The
seven modes of the usual major scale would be represented by

������������

or, equivalently, by any cyclic shift of this pattern.
Notice that we are counting scales by their interval structure, and not by the choice of

starting tone. To enforce this we require that every scale begins with the note 0. So, we can
place 0 in any of the black squares, then add the remaining tones consecutively, in order, left
to right, and with periodic boundary conditions. Those that fall into black squares are in
the scale, those in white squares are excluded from the scale. The pattern above contributes
7 to the count because there are seven distinct positions (the black squares) for the 0-tone.

2 Cyclic compositions

We identify three sequences of squares from which all the allowed scales can be built:

P2 = ��, P3 = ���, P4 = ����.
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For example, the 7 major modes correspond to P3P2P3P2P2.
The key observation is that P2 is forbidden from following P4. This is because P4P2Pj will

contain a distance of 5 semitones between the three consecutive black squares beginning with
the second black square of P4. The allowed patterns of squares are therefore in one-to-one
correspondence with the cyclic compositions of n with parts 2, 3, 4, but with the subsequence
. . . , 4, 2, . . . forbidden.

3 Counting distinct scales

If n is prime, then in any given pattern of squares, every black square represents a distinct
choice for placing the 0-tone in. In this case we may simply count the total number of
black squares and this will be the contribution to sn. If n is not prime, a pattern of squares
might be formed of repeats of a shortest pattern. An example of this in the case n = 12 is
P2P2P2P2P2P2. This pattern has a total of 6 black squares, but represents just one scale, as
all six black squares are effectively the same.

To perform this counting we therefore assign a weight to each of the Pj which is equal
to the number of black squares: i.e. P2 → 1, P3 → 2, and P4 → 2. These weights are then
summed for each pattern of squares, but if a pattern is formed of q repeats of a (shortest)
sub-pattern, the sum must be divided by q.

The sequence (A361378 in the OEIS) can be computed using this algorithm (beginning
with n = 1):

sn = 0, 1, 2, 3, 3, 3, 8, 8, 12, 16, 25, 33, 45, 66, 91, 128, 177, 252, 351, . . .

4 Transfer matrix method

We will consider all walks of k steps on the following directed graph,

P2

P3 P4

with the restriction that if we begin on P2 we must not end on P4. This last restriction
prevents the 4, 2 subsequence in the wrap-around case. We aim to form a generating function
with the exponent of t counting n, the exponent of w counting the number of black squares,
and the exponent of z counting the number k of steps (i.e. the number of parts in the
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composition). We would therefore like to multiply by wt2 for each visit to P2, w
2t3 for each

visit to P3 and w2t4 for each visit to P4. The transfer matrix is therefore

M =

 wt2 wt2 0
w2t3 w2t3 w2t3

w2t4 w2t4 w2t4


for generic transitions, and

M0 =

 wt2 wt2 0
w2t3 w2t3 w2t3

0 0 0


for the last transition in the case that we started on P2.

It turns out that counting the black squares of the patterns produced by the transfer
matrix method, then dividing by the number k of parts, performs our intended enumeration.
This is because if the pattern is not composed of repeats of a sub-pattern, the transfer
matrix method will count it k times, once for each cyclic ordering of the parts. If it is
composed of q repeats of a sequence of p parts Pj1 · · ·Pjp , and so k = qp, the transfer matrix
method will count it p times (once for each choice of starting part). Hence, after dividing
the contribution by k, the corresponding cyclic composition’s contribution is multiplied by
p/k = 1/q, as required.

5 The generating function

Let e = (1, 1, 1) and

u =

 wt2

0
0

 , v =

 0
w2t3

w2t4

 .

The generating function is then formed as follows. Let

F (z, w, t) = zwt2 +
∑
k≥2

zk eM0M
k−2u +

∑
k≥1

zk eMk−1v.

This produces all the walks of interest on the directed graph. The first term represents the
pattern P2 which is only relevant for the case n = 2. The second term counts the patterns of
k parts which begin with P2 (and hence must not end with P4). The last term counts those
patterns which begin with either P3 or P4.

The infinite sums are geometric and hence we have

F (z, w, t) = zwt2 + z2 eM0(I− zM)−1u + z e(I− zM)−1v,

which is easily calculated

F (z, w, t) =
t2wz(1 + tw(1 + t− 2t3wz))

1 + t2wz(−1 + tw(−1− t+ t3wz))
.
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In order to find the generating function for sn we define s(t) =
∑
snt

n, and compute

s(t) = F(1, 1, t),

where

F(z, w, t) =

∫ z

0

dζ

ζ

∂

∂w
F (ζ, w, t).

The derivative in w sums the weights (i.e. the black squares), whilst the integral divides the
sum of weights by the number k of parts as required. The result is

s(t) =
t2 + 2t3 + 2t4 − 3t6

1− t2 − t3 − t4 + t6
.

6 Recursion relation

The generating function suggests the recursion relation for n > 6

sn = sn−2 + sn−3 + sn−4 − sn−6.

It is relatively straightforward to understand this relation: to count sn we can consider all
sn−2 scales built from two less tones and complete them by placing the two extra tones into
a P2 placed at the end, all sn−3 scales built on three less tones completed similarly with
P3, and all sn−4 scales on four less tones completed with P4. In so doing we will introduce
the forbidden subsequence P4P2 and these scales must be removed; this is accomplished by
subtracting the sn−6 scales built from six less tones completed with P4P2.
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