%I #12 Mar 15 2023 11:11:37
%S 1,1,-1,1,17,-339,4999,-63587,566145,3549241,-405637489,15518099961,
%T -446235202799,9617693853925,-75522664207017,-7341781870733099,
%U 596513949276803969,-30104875035438797583,1144712508931072057375,-27381639204739332379151
%N E.g.f. satisfies A(x) = exp( 1/(1 - x/A(x)^2) - 1 ).
%H Winston de Greef, <a href="/A361096/b361096.txt">Table of n, a(n) for n = 0..385</a>
%F a(n) = n! * Sum_{k=0..n} (-2*n+1)^(k-1) * binomial(n-1,n-k)/k!.
%o (PARI) a(n) = n!*sum(k=0, n, (-2*n+1)^(k-1)*binomial(n-1, n-k)/k!);
%Y Cf. A052873, A361093, A361094, A361095, A361097.
%K sign
%O 0,5
%A _Seiichi Manyama_, Mar 01 2023