A361030 is an integer sequence

Peter Bala, March 102023
Let $\mathrm{A}(n)=\operatorname{A361030}(n)=20160 \frac{(3 n)!}{n!(n+3)!^{2}}$. We show that $\mathrm{A}(n)$ is an integer.

Let $\mathrm{B}(n)=\operatorname{A007272}(n)=60 \frac{(2 n)!}{n!(n+3)!}$. Let $\mathrm{C}(n)=\operatorname{A361038}(n)=$ $1680 \frac{(3 n)!}{(2 n)!(n+3)!}$.

That $\mathrm{B}(n)$ and $\mathrm{C}(n)$ are integers follows from the easily verified identities

$$
\begin{equation*}
\mathrm{B}(n)=10\binom{2 n}{n}-15\binom{2 n}{n+1}+6\binom{2 n}{n+2}-\binom{2 n}{n+3} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{C}(n)=280\binom{3 n}{n}-228\binom{3 n}{n+1}+54\binom{3 n}{n+2}-5\binom{3 n}{n+3} \tag{2}
\end{equation*}
$$

Clearly, $\mathrm{A}(n)=\frac{1}{5} \mathrm{~B}(n) \mathrm{C}(n)$. Thus to prove that $\mathrm{A}(n)$ is integral it is enough to prove that 5 divides $\mathrm{B}(n) \mathrm{C}(n)$. This is a consequence of the following result.

Proposition. 5 divides the integers $\mathrm{C}(5 n), \mathrm{C}(5 n+1), \mathrm{C}(5 n+2), \mathrm{C}(5 n+4)$ and $\mathrm{B}(5 n+3)$.

Proof. From (2) we see that

$$
\begin{align*}
\mathrm{C}(n) & \equiv 4\binom{3 n}{n+2}-3\binom{3 n}{n+1}(\bmod 5) \\
& =\frac{5(n-2)(3 n)!}{(n+2)!(2 n-1)!}(\bmod 5) \tag{3}
\end{align*}
$$

Thus the integer

$$
\mathrm{C}(5 n) \equiv 5 \frac{(5 n-2)}{(10 n-1)}\binom{15 n}{5 n+2}(\bmod 5)
$$

Since $10 n-1$ is coprime to 5 for all n it must be the case that $10 n-1$ divides the integer $(5 n-2)\binom{15 n}{5 n+2}$ for all n. Hence $\mathrm{C}(5 n)$ is divisible by 5 . The remaining cases of the proposition are done exactly similarly.

From (3), the integer

$$
\mathrm{C}(5 n+1) \equiv 5 \frac{(5 n-1)}{(10 n+1)}\binom{15 n+3}{5 n+3}(\bmod 5)
$$

Since $10 n+1$ is coprime to 5 for all n we conclude that $\mathrm{C}(5 n+1)$ is divisible by 5 .

From (3), the integer

$$
\mathrm{C}(5 n+2) \equiv 25 \frac{n}{(10 n+3)}\binom{15 n+6}{5 n+4}(\bmod 5)
$$

Since $10 n+3$ is coprime to 5 for all n we conclude that $\mathrm{C}(5 n+2)$ is divisible by 5 .

From (3), the integer

$$
\mathrm{C}(5 n+4) \equiv 5 \frac{(5 n+2)}{(10 n+7)}\binom{15 n+12}{5 n+6}(\bmod 5)
$$

Since $10 n+7$ is coprime to 5 for all n we conclude that $\mathrm{C}(5 n+4)$ is divisible by 5 .

Finally, from (1), the integer

$$
\begin{aligned}
\mathrm{B}(n) & \equiv\binom{2 n}{n+2}-\binom{2 n}{n+3}(\bmod 5) \\
& =\frac{5}{5 n+3}\binom{2 n}{n+2}(\bmod 5) .
\end{aligned}
$$

Hence the integer

$$
\mathrm{B}(5 n+3) \equiv 5 \frac{1}{(5 n+6)}\binom{10 n+6}{5 n+1}(\bmod 5) .
$$

Since $5 n+6$ is coprime to 5 for all n we conclude that $\mathrm{B}(5 n+3)$ is divisible by 5.

