login
Array T(n,m) = (2^(n*m)-1)/(2^m-1) read by antidiagonals, n,m>=1.
0

%I #5 Feb 27 2023 07:05:07

%S 1,1,3,1,5,7,1,9,21,15,1,17,73,85,31,1,33,273,585,341,63,1,65,1057,

%T 4369,4681,1365,127,1,129,4161,33825,69905,37449,5461,255,1,257,16513,

%U 266305,1082401,1118481,299593,21845,511,1,513,65793,2113665,17043521,34636833,17895697,2396745,87381,1023

%N Array T(n,m) = (2^(n*m)-1)/(2^m-1) read by antidiagonals, n,m>=1.

%H Quynh Nguyen, Jean Pedersen, and Hien T. Vu, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Pedersen/pedersen2.html">New Integer Sequences Arising From 3-Period Folding Numbers</a>, JIS vol 19 (2016) #16.3.1 table 1.

%F T(n,m) = (2^(n*m)-1)/(2^m-1) for n>1.

%e The array starts in rows n>=1 and columns m>=1 as

%e 1 1 1 1 1

%e 3 5 9 17 33

%e 7 21 73 273 1057

%e 15 85 585 4369 33825

%e 31 341 4681 69905 1082401

%Y Cf. A000225 (first col), A002450 (2nd col), A023001 (3rd col)

%K nonn,tabl,easy

%O 1,3

%A _R. J. Mathar_, Feb 27 2023