login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) is the sum of the square roots of the divisors of n that are odd squares.
2

%I #8 Jan 29 2023 12:05:44

%S 1,1,1,1,1,1,1,1,4,1,1,1,1,1,1,1,1,4,1,1,1,1,1,1,6,1,4,1,1,1,1,1,1,1,

%T 1,4,1,1,1,1,1,1,1,1,4,1,1,1,8,6,1,1,1,4,1,1,1,1,1,1,1,1,4,1,1,1,1,1,

%U 1,1,1,4,1,1,6,1,1,1,1,1,13,1,1,1,1,1,1

%N a(n) is the sum of the square roots of the divisors of n that are odd squares.

%C First differs from A336649 at n = 27.

%H Amiram Eldar, <a href="/A360163/b360163.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = Sum_{d|n, d odd square} sqrt(d).

%F a(n) = (A069290(n) + A347176(n))/2.

%F a(n) = A069290(n) if n is not a multiple of 4.

%F Multiplicative with a(2^e) = 1, and a(p^e) = (p^(floor(e/2)+1)-1)/(p-1) for p > 2.

%F Dirichlet g.f.: zeta(s)*zeta(2*s-1)*(1-2^(1-2*s)).

%F Sum_{k=1..n} a(k) ~ (n/4) * (log(n) + 3*gamma - 1 + 2*log(2)), where gamma is Euler's constant (A001620).

%t f[p_, e_] := (p^(Floor[e/2] + 1) - 1)/(p - 1); f[2, e_] := 1; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100]

%o (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 1] == 2, 1, (f[i, 1]^(floor(f[i, 2]/2)+1) - 1)/(f[i, 1] - 1))); }

%Y Cf. A001620, A069290, A336649.

%K nonn,easy,mult

%O 1,9

%A _Amiram Eldar_, Jan 29 2023