%I #41 May 12 2023 03:21:32
%S 2,3,5,7,11,13,17,19,23,29,6,9,15,21,33,39,51,57,69,87,10,15,25,35,55,
%T 65,85,95,115,145,14,21,35,49,77,91,119,133,161,203,22,33,55,77,121,
%U 143,187,209,253,319,26,39,65,91,143,169,221,247,299,377,34,51
%N a(n) = product prime(d + 1), where d ranges over all the decimal digits of n.
%H David A. Corneth, <a href="/A359802/b359802.txt">Table of n, a(n) for n = 0..10000</a>
%e a(0) = prime(0+1) = prime(1) = 2.
%e a(5) = prime(5+1) = prime(6) = 13.
%e a(20) = prime(2+1) * prime(0+1) = prime(3) * prime(1) = 5 * 2 = 10.
%p a:= n-> mul(ithprime(d+1), d=convert(n, base, 10)):
%p seq(a(n), n=0..171); # _Alois P. Heinz_, May 11 2023
%o (Python)
%o def a(n):
%o primes = (2, 3, 5, 7, 11, 13, 17, 19, 23, 29)
%o product = 1
%o for d in str(n):
%o product *= primes[int(d)]
%o return product
%o (PARI) a(n) = my(d=digits(n)); if (n==0, d=[0]); prod(k=1, #d, prime(d[k]+1)); \\ _Michel Marcus_, May 12 2023
%Y Very similar to A113581.
%Y Fixed points are in A115078.
%K nonn,easy,base
%O 0,1
%A _Fabian I. Garcia_, May 11 2023