%I #34 Jan 03 2023 02:09:53
%S 69,1633,2244,2303,3379,6603,31563
%N Numbers k such that each digit from 0 to 9 appears in either k^2 or k^3, but not in both.
%C Any subsequent terms are > 10^11. - _Lucas A. Brown_, Jan 02 2023
%e 1633 is a term of the sequence because 1633^2=2666689, having digits: 2,6,8,9 and 1633^3=4354703137, having digits 0,1,3,4,5,7.
%o (PARI) for(n=2, 10^10, if(#setintersect(Set(digits(n^2)),Set(digits(n^3)))==0 && #setunion(Set(digits(n^2)),Set(digits(n^3)))==10, print1(n,", ")));
%o (PARI) isok(k) = my(s2=Set(digits(k^2)), s3=Set(digits(k^3))); (#setintersect(s2,s3)==0) && (#setunion(s2,s3)==10); \\ _Michel Marcus_, Dec 20 2022
%Y Subsequence of A029787.
%K nonn,base,more
%O 1,1
%A _Alexandru Petrescu_, Dec 18 2022