%I #9 Dec 26 2022 03:11:43
%S 1,2,5,7,9,11,35,19,22,25,53,59,65,71,145,157,163,175,181,193,205,217,
%T 221,227,239,81,83,87,91,95,479,499,519,539,549,569,589,609,1847,1907,
%U 1967,2027,2057,2087,2147,2207,1111,563,1141,1171,593,608,613,628,211
%N Numerators of the partial sums of the reciprocals of the maximal exponent in prime factorization of the positive integers (A051903).
%H Amiram Eldar, <a href="/A359071/b359071.txt">Table of n, a(n) for n = 2..10000</a>
%H Wolfgang Schwarz and Jürgen Spilker, <a href="https://doi.org/10.1515/9783110944648.221">A remark on some special arithmetical functions</a>, in: E. Laurincikas , E. Manstavicius and V. Stakenas (eds.), Analytic and Probabilistic Methods in Number Theory, Proceedings of the Second International Conference in Honour of J. Kubilius, Palanga, Lithuania, 23-27 September 1996, New Trends in Probability and Statistics, Vol. 4, VSP BV & TEV Ltd. (1997), pp. 221-245.
%H D. Suryanarayana and R. Chandra Rao, <a href="https://doi.org/10.1007/BF01223919">On the maximum and minimum exponents in factoring integers</a>, Archiv der Mathematik, Vol. 28, No. 1 (1977), pp. 261-269.
%H <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>.
%F a(n) = numerator(Sum_{k=2..n} 1/A051903(k)).
%F a(n)/A359072(n) = c_1 * n + O(n^(1/2)*exp(-c_2*log(n)^(3/5)/log(log(n))^(1/5))), where c_1 = A242977 and c_2 is a constant, 0 < c_2 < 1/2^(8/5) (Suryanarayana and R. Chandra Rao, 1977).
%e Fractions begin with 1, 2, 5/2, 7/2, 9/2, 11/2, 35/6, 19/3, 22/3, 25/3, 53/6, 59/6, ...
%t f[n_] := Max[FactorInteger[n][[;; , 2]]]; f[1] = 0; Numerator[Accumulate[Table[1/f[n], {n, 2, 100}]]]
%Y Cf. A051903, A129132, A242977, A359072 (denominators).
%K nonn,frac
%O 2,2
%A _Amiram Eldar_, Dec 15 2022