login
A358659
Decimal expansion of the asymptotic mean of the ratio between the number of exponential unitary divisors and the number of exponential divisors.
2
9, 8, 4, 8, 8, 3, 6, 4, 1, 8, 7, 7, 2, 2, 8, 2, 9, 4, 0, 9, 5, 3, 7, 0, 1, 3, 8, 0, 4, 8, 9, 6, 1, 1, 3, 7, 6, 4, 7, 3, 1, 6, 3, 2, 2, 2, 2, 7, 0, 5, 8, 1, 3, 4, 5, 5, 0, 0, 6, 3, 6, 2, 3, 5, 5, 0, 2, 2, 3, 9, 6, 8, 0, 6, 5, 9, 0, 8, 2, 3, 8, 0, 0, 8, 1, 8, 9, 3, 8, 0, 9, 5, 5, 7, 4, 0, 8, 7, 6, 9, 1, 3, 3, 4, 4
OFFSET
0,1
LINKS
Nicusor Minculete and László Tóth, Exponential unitary divisors, Annales Univ. Sci. Budapest., Sect. Comp. Vol. 35 (2011), pp. 205-216.
FORMULA
Equals lim_{m->oo} (1/m) Sum_{k=1..m} A278908(k)/A049419(k).
Equals Product_{p prime} (1 + Sum_{e >= 4} (r(e) - r(e-1))/p^e), where r(e) = A278908(e)/A049419(e).
EXAMPLE
0.984883641877228294095370138048961137647316322227058...
MATHEMATICA
r[n_] := 2^PrimeNu[n]/DivisorSigma[0, n]; $MaxExtraPrecision = 500; m = 500; f[x_] := Log[1 + Sum[x^e*(r[e] - r[e - 1]), {e, 4, m}]]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; RealDigits[Exp[f[1/2] + NSum[Indexed[c, k]*(PrimeZetaP[k] - 1/2^k)/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 120][[1]]
CROSSREFS
Similar sequences: A307869, A308042, A308043.
Sequence in context: A200117 A019889 A243266 * A010548 A011458 A343057
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Nov 25 2022
STATUS
approved