The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A358147 Primes p such that the polynomial x^7 - 7*x + 3 (mod p) is the product of seven linear factors. 0
 1879, 5381, 5783, 8819, 8893, 12007, 12917, 13967, 14293, 15727, 18311, 20357, 20441, 22639, 26833, 27791, 28711, 31177, 32233, 33829, 35051, 35963, 38167, 40867, 42667, 43003, 46831, 47269, 49937, 51893, 55717, 58603, 59273, 62591, 63487, 64937, 65543, 68881, 72997, 75323, 75659, 75991, 85517 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Primes p such that GF(p) is a splitting field for the polynomial x^7 - 7*x + 3. LINKS Guillaume Duval, Théorème de Chebotarev et Congruences de suites récurrentes linéaires, liens avec les algorithmes de factorisations sur Fp, arXiv:2208.08899 [math.NT], 2022. In French. See page 24. Wikipedia, Splitting field. EXAMPLE x^7 - 7*x + 3 == (x + 82) * (x + 298) * (x + 407) * (x + 883) * (x + 911) * (x + 1371) * (x + 1685) (mod 1879), so 1879 is a term. PROG (PARI) T(x)=x^7-7*x+3; is(n) = #factor(Mod(1, n)*T(x))~ == 7; forprime (n=2, 10^6, if(is(n), print1(n, ", ") ) ); \\ Joerg Arndt, Nov 01 2022 CROSSREFS Sequence in context: A045201 A020407 A320719 * A235193 A072494 A260137 Adjacent sequences: A358144 A358145 A358146 * A358148 A358149 A358150 KEYWORD nonn AUTHOR Michel Marcus, Oct 31 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 30 22:27 EST 2023. Contains 359947 sequences. (Running on oeis4.)