Notes on A357562

Peter Bala, Oct 162022
Let $\mathrm{A}(\mathrm{n})=\mathrm{A} 357562(\mathrm{n})$. The definition is

$$
\begin{equation*}
A(n)=n-2 a(a(n)) \text { for } n \geq 2 \tag{1}
\end{equation*}
$$

where $a(n)=\operatorname{A356988}(n)$ is defined by the nested recurrence

$$
\begin{equation*}
a(n)=n-a(a(n-a(a(a(n-1))))) \tag{2}
\end{equation*}
$$

with the initial condition $\mathrm{a}(1)=1$.

Definition. The sequence $\{u(n)\}$ is slow if $u(n+1)-u(n) \in\{0,1\}$. It is shown in [1] that the sequences $\{a(n)\}$ and $\{a(a(n))\}$ are slow.

From (1) we have $A(n+1)-A(n)=1-2(a(a(n+1))-a(a(n)))$. Since the sequence $\{a(a(n)\}$ is slow it follows that the difference $A(n+1)-A(n)$ is either 1 or -1 .

In order to analyse the structure of the sequence $\{A(n)\}$ we will need following facts about A356988 [1, Proposition 2]:
a) for $k>=2$,

$$
\begin{equation*}
a(\mathrm{~L}(k-1))=\mathrm{F}(k), \tag{3}
\end{equation*}
$$

where $\mathrm{F}(n)=\mathrm{A} 000045(n)$, the n-th Fibonacci number and $\mathrm{L}(n)=$ $\operatorname{A} 000032(n)$, the n-th Lucas number (recall that $\mathrm{L}(n)=\mathrm{F}(n+1)+\mathrm{F}(n-1))$.
b) for $k>=1$,

$$
\begin{equation*}
a(\mathrm{~F}(k+1))=\mathrm{F}(k) . \tag{4}
\end{equation*}
$$

In addition, we will require the result

$$
\begin{equation*}
\mathrm{a}(2 \mathrm{~F}(k))=\mathrm{L}(k-1) \text { for } k \geq 2 \tag{5}
\end{equation*}
$$

which follows easily from Proposition 2 of [1] on writing $2 \mathrm{~F}(k)$ as $\mathrm{F}(k+1)+\mathrm{F}(k-2)$.

The structure of $\{A(n)\}$.
The sequence vanishes at abscissa values $n=2,4,6,10,16,26, \ldots, 2 \mathrm{~F}(k), \ldots$.
The graph of the sequence, starting from the zero value at abscissa $n=2 \mathrm{~F}(k)$, ascends with slope 1 to a local peak at height $\mathrm{F}(k-1)$ at abscissa value $n=\mathrm{F}(k+2)$ before descending with slope -1 to the next zero at at abscissa $n=2 \mathrm{~F}(k+1)$.

Proof. Assume $k \geq 2$.

1) First we prove the claim that oOn the interval $[2 \mathrm{~F}(k), \mathrm{F}(k+2)]$ the line graph of the sequence ascends with slope 1 from a value of 0 at abscissa $n=2 \mathrm{~F}(k)$ to a local peak at height $\mathrm{F}(k-1)$ at abscissa value $n=\mathrm{F}(k+2)$.

At the left endpoint of the interval we calculate

$$
\begin{align*}
A(2 \mathrm{~F}(k)) & =2 \mathrm{~F}(k)-2 a(a(2 \mathrm{~F}(k))) \\
& =2 \mathrm{~F}(k)-2 a(\mathrm{~L}(k-1)) \text { by }(5) \\
& =2 \mathrm{~F}(k)-2 \mathrm{~F}(k) \text { by }(3) \\
& =0 \tag{6}
\end{align*}
$$

At the right endpoint of the interval we calculate

$$
\begin{aligned}
A(\mathrm{~F}(k+2)) & =\mathrm{F}(k+2)-2 a(a(\mathrm{~F}(k+2))) \\
& =\mathrm{F}(k+2)-2 a(\mathrm{~F}(k+1)) \text { by }(4) \\
& =\mathrm{F}(k+2)-2 \mathrm{~F}(k) \text { again by }(4) \\
& =\mathrm{F}(k-1) .
\end{aligned}
$$

Thus on the integer interval $[2 \mathrm{~F}(k), \mathrm{F}(k+2)]$, of length $\mathrm{F}(k+2)-2 \mathrm{~F}(k)=$ $\mathrm{F}(k-1)$, the sequence $\{A(n)\}$ increases in value from 0 to $F(k-1)$. But we showed above that $A(n+1)-A(n)$ is either 1 or -1 . Hence on the interval $[2 \mathrm{~F}(k), \mathrm{F}(k+2)]$ the line graph of the sequence must have slope 1.
2) On the interval $[\mathrm{F}(k+2), 2 \mathrm{~F}(k+1)]$, of length $2 \mathrm{~F}(k+1)-\mathrm{F}(k+2)=$ $\mathrm{F}(k-1)$, the sequence $\{A(n)\}$ decreases in value from a peak value of $\mathrm{F}(k-1)$ down to the value $A(2 \mathrm{~F}(k+1))=0$ by (6). Again, since $A(n+1)-A(n)$ is either 1 or -1 , it must be the case that on the interval $[\mathrm{F}(k+2), 2 \mathrm{~F}(k+1)]$ the line graph of the sequence has slope -1 .

References

[1] Peter Bala, Notes on A356988

