login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Consider a clock face with 2*n "hours" marked around the dial; a(n) = number of ways to match the even hours to the odd hours, modulo rotations and reflections.
1

%I #37 Feb 06 2024 12:59:25

%S 1,1,3,5,17,53,260,1466,10915,93196,917898,10015299,119914982,

%T 1557364352,21797494987,326930305166,5230756117008,88922108947567,

%U 1600594738591550,30411281088326498,608225534389576956,12772735698577492558

%N Consider a clock face with 2*n "hours" marked around the dial; a(n) = number of ways to match the even hours to the odd hours, modulo rotations and reflections.

%H Barry Cipra, <a href="/A357442/a357442.pdf">Illustration for a(5) = 17</a>

%H N. J. A. Sloane, <a href="/A357442/a357442.png">Sketch illustrating a(1) = a(2) = 1, a(3) = 3</a>

%H Philip Todd, <a href="https://arxiv.org/abs/2401.13002">Theorem Discovery Amongst Cyclic Polygons</a>, arXiv:2401.13002 [cs.CG], 2024.

%F See PARI code for the formula. - _Max Alekseyev_, Nov 10 2022

%o (PARI) { a357442(n) = ( sumdiv(n,d,(n\d)!*d^(n\d)*eulerphi(d)) + n*sum(k=0,n\2,n!\k!\2^k\(n-2*k)!) + if(n%2, n*((n-1)\2)!*2^((n-1)\2) + sumdiv(n,d, eulerphi(d)*sum(k=0,n\d\2,(n\d)! \ (2*k+1)! \ ((n\d-1)\2-k)! * (d/2)^((n\d-1)\2-k) ))) )\n\4; } \\ _Max Alekseyev_, Nov 10 2022

%Y Cf. A000031, A000699, A007769, A059375.

%K nonn

%O 1,3

%A _N. J. A. Sloane_, Nov 06 2022, based on an email from _Barry Cipra_, Oct 26 2022

%E Terms a(7) onward from _Max Alekseyev_, Nov 10 2022