login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows. T(n, k) = RisingFactorial(n + 1, n) / (k! * (n - k)!).
3

%I #24 Feb 15 2023 04:41:01

%S 1,2,2,6,12,6,20,60,60,20,70,280,420,280,70,252,1260,2520,2520,1260,

%T 252,924,5544,13860,18480,13860,5544,924,3432,24024,72072,120120,

%U 120120,72072,24024,3432,12870,102960,360360,720720,900900,720720,360360,102960,12870

%N Triangle read by rows. T(n, k) = RisingFactorial(n + 1, n) / (k! * (n - k)!).

%C The counterpart using the falling factorial is Leibniz's Harmonic Triangle A003506.

%F Bernoulli(n) / Catalan(n) = Sum_{k=0..n} (-1)^k*A173018(n, k) / T(n, k), (with Bernoulli(1) = 1/2).

%F G.f.: 1/sqrt(1 - 4*x*(y + 1)). - _Vladimir Kruchinin_, Feb 15 2023

%e Triangle T(n, k) begins:

%e [0] 1;

%e [1] 2, 2;

%e [2] 6, 12, 6;

%e [3] 20, 60, 60, 20;

%e [4] 70, 280, 420, 280, 70;

%e [5] 252, 1260, 2520, 2520, 1260, 252;

%e [6] 924, 5544, 13860, 18480, 13860, 5544, 924;

%e [7] 3432, 24024, 72072, 120120, 120120, 72072, 24024, 3432;

%e [8] 12870, 102960, 360360, 720720, 900900, 720720, 360360, 102960, 12870;

%p A356546 := (n, k) -> pochhammer(n+1, n)/(k!*(n-k)!):

%p for n from 0 to 8 do seq(A356546(n, k), k=0..n) od;

%t T[ n_, k_] := Binomial[2*n, n] * Binomial[n, k]; (* _Michael Somos_, Aug 18 2022 *)

%o (SageMath)

%o def A356546(n, k):

%o return rising_factorial(n+1,n) // (factorial(k) * factorial(n-k))

%o for n in range(9): print([A356546(n, k) for k in range(n+1)])

%o (PARI) {T(n, k) = binomial(2*n, n) * binomial(n, k)}; /* _Michael Somos_, Aug 18 2022 */

%Y cf. A000984, A059304 (row sums, see also A343842), A265609 (rising factorial).

%Y Cf. A003506, A173018 (Eulerian numbers), A000108, A000897 (central terms).

%K sign,tabl

%O 0,2

%A _Peter Luschny_, Aug 12 2022