login
a(n) is the smallest number that starts a run of exactly n consecutive numbers in A126706, or -1 if no such number exists.
4

%I #30 Aug 27 2024 18:18:33

%S 12,44,98,3174,844,22020,217070,1092747,8870024,262315467,221167422,

%T 47255689915,82462576220,1043460553364,79180770078548

%N a(n) is the smallest number that starts a run of exactly n consecutive numbers in A126706, or -1 if no such number exists.

%C Term a(n) begins a run of n consecutive nonsquarefree numbers m such that omega(m) > 1.

%C The run of m must occur between successive primes.

%H Rémy Sigrist, <a href="/A356322/a356322.txt">C program</a>

%e a(n) is the first term in the sequences shown below:

%e n: a(n)..a(n)+n-1

%e -----------------

%e 1: {12}

%e 2: {44, 45}

%e 3: {98, 99, 100}

%e 4: {3174, 3175, 3176, 3177}

%e 5: {844, 845, 846, 847, 848}

%e 6: {22020, 22021, 22022, 22023, 22024, 22025}

%e 7: {217070, 217071, 217072, 217073, 217074, 217075, 217076}

%e ...

%e There are 4 consecutive numbers m in A126706 starting from 844 and again from 2888, but since 848 and 2892, respectively, are also in A126706, these m ascribe to n = 5 instead. The range m = 3174..3177 has at most n = 4 numbers in A126706 and 3174 is the smallest number with that quality, hence a(4) = 3174.

%t j = 0; k[_] = False; Sort[Reap[Do[If[And[#2 > 1, #1 != #2] & @@ {PrimeOmega[n], PrimeNu[n]}, j++; If[! IntegerQ[c], Set[c, n]], If[j > 0, If[! k[j], Sow[{j, c}] ]; Set[{k[j], j}, {True, 0}]; Clear[c] ] ], {n, 2^16}] ][[-1, -1]] ][[All, -1]]

%o (C) // See Links section.

%Y Cf. A001221, A001222, A001223, A005250, A013929, A024619, A126706.

%K nonn,more

%O 1,1

%A _Michael De Vlieger_, Oct 28 2022

%E a(10)-a(11) from _Rémy Sigrist_, Oct 29 2022

%E a(12)-a(14) from _Martin Ehrenstein_, Oct 30 2022

%E a(15) from _Martin Ehrenstein_, Nov 02 2022