Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #8 Aug 02 2022 05:51:19
%S 1,4,37,334,3280,29437,282253,2517904,23209785,206685325,1858085653,
%T 16266231810,144339750406,1250038867329,10882952174845,93546973843450,
%U 804847296088574,6843680884286307,58300294406199829,491683063753997014,4148296662116385627,34746182976196757434
%N a(n) = Sum_{k=0..n} binomial(3*n, k) * p(k), where p(k) is the partition function A000041.
%F a(n) ~ 3^(3*n) * exp(Pi*sqrt(2*n/3)) / (sqrt(Pi) * n^(3/2) * 2^(2*n + 2)).
%t Table[Sum[Binomial[3*n, k] * PartitionsP[k], {k, 0, n}], {n, 0, 30}]
%o (PARI) a(n) = sum(k=0, n, binomial(3*n, k)*numbpart(k)); \\ _Michel Marcus_, Aug 02 2022
%Y Cf. A000041, A188675, A356267, A356285.
%K nonn
%O 0,2
%A _Vaclav Kotesovec_, Aug 01 2022