login
T(n,k) are the numerators of the coefficients of the Legendre polynomials of degree n, with increasing exponents, where T(n,k) is a triangle read by rows.
1

%I #5 Jul 29 2022 14:14:36

%S 1,0,1,-1,0,3,0,-3,0,5,3,0,-15,0,35,0,15,0,-35,0,63,-5,0,105,0,-315,0,

%T 231,0,-35,0,315,0,-693,0,429,35,0,-315,0,3465,0,-3003,0,6435,0,315,0,

%U -1155,0,9009,0,-6435,0,12155,-63,0,3465,0,-15015,0,45045,0,-109395,0,46189

%N T(n,k) are the numerators of the coefficients of the Legendre polynomials of degree n, with increasing exponents, where T(n,k) is a triangle read by rows.

%e The triangle begins:

%e 1;

%e 0, 1;

%e -1, 0, 3;

%e 0, -3, 0, 5;

%e 3, 0, -15, 0, 35;

%e 0, 15, 0, -35, 0, 63;

%e -5, 0, 105, 0, -315, 0, 231;

%e 0, -35, 0, 315, 0, -693, 0, 429;

%e 35, 0, -315, 0, 3465, 0, -3003, 0, 6435;

%e 0, 315, 0, -1155, 0, 9009, 0, -6435, 0, 12155

%e .

%e Fractions:

%e \ k 0 1 2 3 4 5 6 7 8

%e n \ -------------------------------------------------------------------

%e 0 | 1 . . . . . . . .

%e 1 | 0 1 . . . . . . .

%e 2 | -1/2 0 3/2 . . . . . .

%e 3 | 0 -3/2 0 5/2 . . . . .

%e 4 | 3/8 0 -15/4 0 35/8 . . . .

%e 5 | 0 15/8 0 -35/4 0 63/8 . . .

%e 6 | -5/16 0 105/16 0 -315/16 0 231/16 . .

%e 7 | 0 -35/16 0 315/16 0 -693/16 0 429/16 .

%e 8 | 35/128 0 -315/32 0 3465/64 0 -3003/32 0 6435/128

%o (PARI) for (n=0, 10, my(P=pollegendre(n,'x));for (j=0, n, print1(numerator(polcoef(P,j)),", ")); print())

%Y A356206 are the corresponding denominators.

%Y Cf. A005187, A100258.

%K sign,tabl,frac

%O 0,6

%A _Hugo Pfoertner_, Jul 29 2022