Proof that A355641 consists of all numbers divisible by at least one of $5,6,8,9,14,21$.

If k is divisible by 5 , then k is in the sequence because $k=\frac{k}{5}+\frac{k}{5}+\frac{k}{5}+\frac{k}{5}+\frac{k}{5}$ exhibits k as the sum of 5 divisors of k and thus a member of A355641.

If k is divisible by 6 , then $k=\frac{k}{3}+\frac{k}{6}+\frac{k}{6}+\frac{k}{6}+\frac{k}{6}$.

If k is divisible by 8 , then $k=\frac{k}{4}+\frac{k}{4}+\frac{k}{4}+\frac{k}{8}+\frac{k}{8}$.

If k is divisible by 9 , then $k=\frac{k}{3}+\frac{k}{3}+\frac{k}{9}+\frac{k}{9}+\frac{k}{9}$.
If k is divisible by 14 , then $k=\frac{k}{2}+\frac{k}{7}+\frac{k}{7}+\frac{k}{7}+\frac{k}{14}$.
If k is divisible by 21 , then $k=\frac{k}{3}+\frac{k}{3}+\frac{k}{7}+\frac{k}{7}+\frac{k}{21}$.
Conversely, to show every member of A355641 is divisible by at least one of those six numbers, we consider all positive integer solutions of the equation $1=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{e}$. Without loss of generality, we may assume $a \leq b \leq c \leq d \leq e$. In particular, $\frac{5}{a} \geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{e}=1$ so $a \leq 5$. Similarly, given $a, \frac{4}{b} \geq \frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{e}=1-\frac{1}{a}$, so $b \leq \frac{4}{1-\frac{1}{a}}$. On the other hand, $\frac{1}{a}+\frac{1}{b}<1$ so $b>\frac{1}{1-\frac{1}{a}}$. Similarly we can get upper and lower bounds for each of the variables in terms of the previous ones, and enumerate all solutions [a, b, c, d, e] using the following Maple program.

```
> R:= NULL:
    for a from 2 to 5 do
        x:= 1-1/a;
        for b from max(a,ceil(1/x)) to floor(4/x) do
            y:= x-1/b; if y = 0 then next fi;
            for c from max(b,ceil(1/y)) to floor(3/y) do
```

```
z:= y-1/c; if z = 0 then next fi;
for d from max(c,ceil(1/z)) to floor(2/z) do
    w:= z-1/d; if w = 0 then next fi;
    e:= 1/w; if e::integer and e >= d then R:= R, [a,b,c,d,
    e] fi
    od od od od:
nops([R])
```

$$
\begin{equation*}
147 \tag{1}
\end{equation*}
$$

It turns out there are 147 solutions with $a \leq b \leq c \leq d \leq e$. Each corresponds to a possible pattern $k=\frac{k}{a}+\frac{k}{b}+\frac{k}{c}+\frac{k}{d}+\frac{k}{e}$ for writing k as the sum of 5 of its divisors which works when k is divisible by each of a, b, c, d, e. We look for solutions that do not have the property that at least one of a, b, c, d, e is divisible by at least one of $5,6,8,9,14$ and 21.

```
> remove (t -> member (0, t mod 5) or member (0, t mod 6) or member (0,
    t mod 8) or member(0, t mod 9) or member(0, t mod 14) or member
    (0, t mod 21), [R]);
                                    [[2, 3, 11, 22, 33]]
```

There is one such solution, but in order for this to work for k, k must be divisible by 2 and 3 and thus by 6.

For those who wish to check out the full list of solutions, here they are:
R
$[2,3,7,43,1806],[2,3,7,44,924],[2,3,7,45,630],[2,3,7,46,483],[2,3,7,48,336],[2,3$,
$7,49,294],[2,3,7,51,238],[2,3,7,54,189],[2,3,7,56,168],[2,3,7,60,140],[2,3,7$, $63,126],[2,3,7,70,105],[2,3,7,78,91],[2,3,7,84,84],[2,3,8,25,600],[2,3,8,26$, $312],[2,3,8,27,216],[2,3,8,28,168],[2,3,8,30,120],[2,3,8,32,96],[2,3,8,33,88]$, $[2,3,8,36,72],[2,3,8,40,60],[2,3,8,42,56],[2,3,8,48,48],[2,3,9,19,342],[2,3,9$, $20,180],[2,3,9,21,126],[2,3,9,22,99],[2,3,9,24,72],[2,3,9,27,54],[2,3,9,30,45]$, $[2,3,9,36,36],[2,3,10,16,240],[2,3,10,18,90],[2,3,10,20,60],[2,3,10,24,40],[2$, $3,10,30,30],[2,3,11,14,231],[2,3,11,15,110],[2,3,11,22,33],[2,3,12,13,156],[2$, $3,12,14,84],[2,3,12,15,60],[2,3,12,16,48],[2,3,12,18,36],[2,3,12,20,30],[2,3$, $12,21,28],[2,3,12,24,24],[2,3,13,13,78],[2,3,14,14,42],[2,3,14,15,35],[2,3,14$, $21,21],[2,3,15,15,30],[2,3,15,20,20],[2,3,16,16,24],[2,3,18,18,18],[2,4,5,21$, $420],[2,4,5,22,220],[2,4,5,24,120],[2,4,5,25,100],[2,4,5,28,70],[2,4,5,30,60]$, $[2,4,5,36,45],[2,4,5,40,40],[2,4,6,13,156],[2,4,6,14,84],[2,4,6,15,60],[2,4,6$, $16,48],[2,4,6,18,36],[2,4,6,20,30],[2,4,6,21,28],[2,4,6,24,24],[2,4,7,10,140]$, $[2,4,7,12,42],[2,4,7,14,28],[2,4,8,9,72],[2,4,8,10,40],[2,4,8,12,24],[2,4,8$, $16,16],[2,4,9,9,36],[2,4,9,12,18],[2,4,10,10,20],[2,4,10,12,15],[2,4,12,12,12]$, $[2,5,5,11,110],[2,5,5,12,60],[2,5,5,14,35],[2,5,5,15,30],[2,5,5,20,20],[2,5,6$, $8,120],[2,5,6,9,45],[2,5,6,10,30],[2,5,6,12,20],[2,5,6,15,15],[2,5,7,7,70],[2$, $5,8,8,20],[2,5,10,10,10],[2,6,6,7,42],[2,6,6,8,24],[2,6,6,9,18],[2,6,6,10,15]$, $[2,6,6,12,12],[2,6,7,7,21],[2,6,8,8,12],[2,6,9,9,9],[2,7,7,7,14],[2,8,8,8,8]$, $[3,3,4,13,156],[3,3,4,14,84],[3,3,4,15,60],[3,3,4,16,48],[3,3,4,18,36],[3,3,4$,
$20,30],[3,3,4,21,28],[3,3,4,24,24],[3,3,5,8,120],[3,3,5,9,45],[3,3,5,10,30],[3$, $3,5,12,20],[3,3,5,15,15],[3,3,6,7,42],[3,3,6,8,24],[3,3,6,9,18],[3,3,6,10,15]$, $[3,3,6,12,12],[3,3,7,7,21],[3,3,8,8,12],[3,3,9,9,9],[3,4,4,7,42],[3,4,4,8,24]$, $[3,4,4,9,18],[3,4,4,10,15],[3,4,4,12,12],[3,4,5,5,60],[3,4,5,6,20],[3,4,6,6$, $12],[3,4,6,8,8],[3,5,5,5,15],[3,5,5,6,10],[3,6,6,6,6],[4,4,4,5,20],[4,4,4,6$, $12],[4,4,4,8,8],[4,4,5,5,10],[4,4,6,6,6],[5,5,5,5,5]$

