Let $n \in \mathbb{N}, 0<t_{1} \leq \cdots \leq t_{n}$ and

$$
\begin{equation*}
p:=\prod_{i=1}^{n}\left(3+\frac{1}{t_{i}}\right) . \tag{1}
\end{equation*}
$$

Assuming $0 \leq m<n$ and t_{1}, \ldots, t_{m} specified, we derive bounds for t_{m+1}. Set

$$
\begin{equation*}
u_{m}:=\prod_{i=1}^{m}\left(3+\frac{1}{t_{i}}\right) \quad \text { and } \quad v_{m}:=\prod_{i=m+1}^{n}\left(3+\frac{1}{t_{i}}\right) \tag{2}
\end{equation*}
$$

where empty products are defined to be 1 , so $u_{0}=1$. Then

$$
\begin{equation*}
p=u_{m} v_{m} \geq u_{m}\left(3+\frac{1}{t_{m+1}}\right) 3^{n-m-1} \tag{3}
\end{equation*}
$$

gives

$$
\begin{equation*}
\frac{1}{t_{m+1}} \leq \frac{p}{u_{m} 3^{n-m-1}}-3 \tag{4}
\end{equation*}
$$

The right hand side is positive because $p=u_{m} v_{m}>u_{m} 3^{n-m}$, hence:

$$
\begin{equation*}
t_{m+1} \geq \frac{1}{\frac{p}{u_{m} 3^{n-m-1}}-3} \tag{5}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
p=u_{m} v_{m} \leq u_{m}\left(3+\frac{1}{t_{m+1}}\right)^{n-m} \tag{6}
\end{equation*}
$$

gives

$$
\begin{equation*}
\frac{1}{t_{m+1}} \geq\left(\frac{p}{u_{m}}\right)^{\frac{1}{n-m}}-3 \tag{7}
\end{equation*}
$$

Again, the right hand side is positive because $p=u_{m} v_{m}>u_{m} 3^{n-m}$, hence:

$$
\begin{equation*}
t_{m+1} \leq \frac{1}{\left(\frac{p}{u_{m}}\right)^{\frac{1}{n-m}}-3} \tag{8}
\end{equation*}
$$

Bounds (5) and (8) were used for calculating terms of A355626 and the related sequences with the PARI program attached to A355626. There, the t_{i} are integers with $2 \leq t_{1} \leq \cdots \leq t_{n}$. Given an integer target value for the product p, for which obviously $3^{n}<p<3.5^{n}$ must hold, said PARI program loops over the feasible values of t_{1}, \ldots, t_{n-1}, calculates the corresponding value of t_{n}, and checks whether this value of t_{n} is integer. For $m<n-1$ we can write $>$ instead of \geq in (3) and in (5), so, t_{m+1} is bounded from below by the smallest integer that is larger than the right hand side of 5 .

