%I #12 Aug 21 2022 09:08:47
%S 35,142,357,746,1351,2250,3533,5248,7467,10232,13675,17910,22979,
%T 28972,35931,44192,53677,64392,76727,90640,106209,123614,142849,
%U 164232,187841,213802,242181,273080,306733,343266,382745,425218,470685,519740,572275,628302,688277,752440,820557,892634,969475
%N Convolution of A007528 and A002476.
%C Convolution of the primes == 1 (mod 6) and the primes == 5 (mod 6).
%H Robert Israel, <a href="/A354543/b354543.txt">Table of n, a(n) for n = 2..10000</a>
%F a(n) = Sum_{j=1..n-1} A007528(j)*A002476(n-j).
%e a(4) = A007528(1)*A002476(3) + A007528(2)*A002476(2) + A007528(3)*A002476(1) = 7*17 + 13*11 + 19*5 = 357.
%p P1:= select(isprime, [seq(i,i=1..10000,6)]):
%p P5:= select(isprime, [seq(i,i=5..10000,6)]):
%p seq(add(P1[i]*P5[n-i],i=1..n-1), n=1..min(nops(P1),nops(P5))+1);
%Y Cf. A002476, A007528, A354542.
%K nonn
%O 2,1
%A _J. M. Bergot_ and _Robert Israel_, Aug 17 2022