Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #9 May 19 2022 16:43:01
%S 2,0,0,4,0,8,0,8,4,8,0,16,0,8,8,16,0,16,0,32,8,8,0,24,4,8,8,48,0,40,0,
%T 32,8,8,8,44,0,8,8,40,0,72,0,80,16,8,0,48,4,32,8,96,0,48,8,56,8,8,0,
%U 56,0,8,32,64,8,120,0,128,8,72,0,64,0,8,16,144,8,168,0,80,16,8,0,72,8,8,8,88,0,80,8,176
%N Sum of A348717 and its Dirichlet inverse.
%C The first negative term is a(520) = -8.
%H Antti Karttunen, <a href="/A354187/b354187.txt">Table of n, a(n) for n = 1..20000</a>
%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%F a(n) = A348717(n) + A354186(n).
%F a(1) = 2, and for n > 1, a(n) = -Sum_{d|n, 1<d<n} A348717(d) * A354186(n/d).
%o (PARI)
%o A348717(n) = if(1==n, 1, my(f = factor(n), k = primepi(f[1, 1])-1); for (i=1, #f~, f[i, 1] = prime(primepi(f[i, 1])-k)); factorback(f));
%o memoA354186 = Map();
%o A354186(n) = if(1==n,1,my(v); if(mapisdefined(memoA354186,n,&v), v, v = -sumdiv(n,d,if(d<n,A348717(n/d)*A354186(d),0)); mapput(memoA354186,n,v); (v)));
%o A354187(n) = (A348717(n)+A354186(n));
%Y Cf. A348717, A354186.
%K sign
%O 1,1
%A _Antti Karttunen_, May 19 2022