%I #18 Nov 10 2023 18:31:30
%S 113,453,1813,7253,29013,116053,464213,1856853,7427413,29709653,
%T 118838613,475354453,1901417813,7605671253,30422685013,121690740053,
%U 486762960213,1947051840853,7788207363413,31152829453653,124611317814613,498445271258453,1993781085033813
%N a(n) = (85*4^n - 1)/3.
%C When any term in the sequence is iterated using the Collatz function, its trajectory's only odd number before reaching 1 will be 85.
%C Also, each term would have 2n+10 steps as its stopping time (A006577).
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (5,-4).
%e When n=5, a(5) = 29013 and when iterated using the Collatz function will have the following trajectory: 87040,43520,21760,10880,5440,2720,1360,680,340,170,85,256,128,64,32,16,8,4,2,1
%t (85*4^Range[25] - 1)/3 (* _Wesley Ivan Hurt_, Nov 10 2023 *)
%o (PARI) a(n) = 85*4^n\3 \\ _Charles R Greathouse IV_, Sep 09 2022
%Y Subsequence of A198584.
%Y Cf. A006577.
%K nonn,easy
%O 1,1
%A _Krishna Kumar Arumugam_, Sep 03 2022
%E Simpler definition and more terms from _Jon E. Schoenfield_, Sep 09 2022