%I #6 May 13 2022 10:00:25
%S 1,-2,0,-3,-1,4,-4,-4,-7,14,-10,-2,-5,6,19,-102,70,-95,138,-314,174,
%T 48,-70,-156,-797,2028,-2048,1989,-3479,4277,-2080,-11462,7923,-12448,
%U 32218,-68038,68683,-64844,82847,-170573,-24942,257846,-422887,599115,-1225608,2072993
%N Product_{n>=1} 1 / (1 - a(n)*x^n) = 1 + Sum_{n>=1} mu(n)*x^n, where mu = A008683.
%t A[m_, n_] := A[m, n] = Which[m == 1, MoebiusMu[n], m > n >= 1, 0, True, A[m - 1, n] - A[m - 1, m - 1] A[m - 1, n - m + 1]]; a[n_] := A[n, n]; a /@ Range[1, 46]
%Y Cf. A008683, A320781, A353926, A353927, A353945, A353947, A353948.
%K sign
%O 1,2
%A _Ilya Gutkovskiy_, May 12 2022