%I #5 May 11 2022 22:46:45
%S 1,-1,0,0,-1,2,-4,5,-7,9,-10,10,-5,4,19,-29,70,-84,138,-121,174,-38,
%T -70,364,-797,1423,-2048,3001,-3479,3324,-2080,-703,7923,-15258,32218,
%U -46063,68683,-73394,82847,-45206,-24942,191996,-422887,780535,-1225608,1713171,-2093347
%N Product_{n>=1} (1 + a(n)*x^n) = 1 + Sum_{n>=1} mu(n)*x^n, where mu = A008683.
%t A[m_, n_] := A[m, n] = Which[m == 1, MoebiusMu[n], m > n >= 1, 0, True, A[m - 1, n] - A[m - 1, m - 1] A[m, n - m + 1]]; a[n_] := A[n, n]; a /@ Range[1, 47]
%Y Cf. A008683, A320781, A353923, A353924, A353925.
%K sign
%O 1,6
%A _Ilya Gutkovskiy_, May 11 2022