Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Apr 19 2022 22:46:00
%S 1,1,1,1,1,3,1,3,1,2,1,6,1,3,3,5,1,6,1,5,2,2,1,14,1,3,3,6,1,12,1,6,3,
%T 2,3,20,1,3,2,10,1,12,1,5,6,2,1,27,1,5,3,6,1,14,2,14,2,3,1,32,1,2,5,
%U 11,3,12,1,5,3,12,1,43,1,3,6,6,3,12,1,17,5,2,1,38,2,3,2,10,1,38,2,5,3,2,3,46,1,6,6
%N Number of ways to write the square of n as a product of the terms of A353355 larger than 1; a(1) = 1 by convention (an empty product).
%C Number of factorizations of n^2 into factors k > 1 for which A353354(k) = 0.
%H Antti Karttunen, <a href="/A353415/b353415.txt">Table of n, a(n) for n = 1..16384</a>
%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%F a(n) = A353414(A000290(n)).
%F a(p) = 1 for all primes p.
%F a(n) = a(A003961(n)) = a(A348717(n)), for all n >= 1.
%o (PARI)
%o A332823(n) = { my(f = factor(n),u=(sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2)%3); if(2==u,-1,u); };
%o A353354(n) = sumdiv(n,d,A332823(d));
%o A353380(n) = (0==A353354(n));
%o A353414(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m)&&A353380(d), s += A353414(n/d, d))); (s));
%o A353415(n) = A353414(n^2);
%Y Cf. A000290, A003961, A048675, A332823, A348717, A353352, A353354, A353355, A353380, A353414.
%K nonn
%O 1,6
%A _Antti Karttunen_, Apr 19 2022