%I #9 Mar 30 2022 03:36:39
%S 1,1,2,3,2,5,3,4,6,3,5,6,5,7,4,7,3,9,10,7,5,11,6,13,5,7,6,15,4,22,7,9,
%T 13,7,9,13,7,10,15,6,27,5,19,7,11,11,12,23,7,16,29,7,17,15,7,17,23,7,
%U 18,22,11,13,13,14,14,13,11,14,15,9,27,7,19,15,12
%N a(1) = 1, and for any n > 1, A109812(n) is the a(n)-th positive number k such that A109812(n-1) AND k = 0 (where AND denotes the bitwise AND operator).
%C To compute the binary expansion of a(n) (for n > 1):
%C - take the binary expansion of A109812(n)
%C - and remove the bits corresponding to the 1's in the binary expansion of A109812(n-1).
%H Rémy Sigrist, <a href="/A352708/b352708.txt">Table of n, a(n) for n = 1..10000</a>
%H Rémy Sigrist, <a href="/A352708/a352708.png">Log-log scatterplot of the first 2^20 terms</a>
%H Rémy Sigrist, <a href="/A352708/a352708.txt">C++ program</a>
%o (C++) See Links section.
%Y Cf. A109812.
%K nonn,look,base
%O 1,3
%A _Rémy Sigrist_, Mar 30 2022