1340. Modular Ackermann

Let $\mathrm{s}(\mathrm{n})$ be the number of steps for the mod-n Ackermann function to stabilize.
(a) True or False: For every $\mathrm{n}, \mathrm{s}(\mathrm{n})$ is finite.
(b) How many values of n are there for which $\mathrm{s}(\mathrm{n})=4$?

Definitions. The Ackermann function $\mathrm{A}(\mathrm{x}, \mathrm{y})$ (x, y nonnegative integers) is the classic example of a very fast-growing function:
$A(0,0)=1, A(1,1)=3 ; A(2,2)=7, A(3,3)=61, A(4,4)=2^{\wedge}\left(2^{\wedge}\left(2^{\wedge}\left(2^{\wedge} 16\right)\right)\right)-3$, or about $10^{\wedge} 10^{\wedge} 10^{\wedge} 20000$. The definition follows and the table below shows the values (the UpArrow notation denotes repeated exponentiation: 2 UpArrow 4 is $2^{\wedge} 2^{\wedge} 2^{\wedge} 2$, or 65536).
$A(0, y)=y+1$
$A(x, 0)=A(x-1,1)$
$A(x, y)=A(x-1, A(x, y-1)))$ if $x \geq 1$ and $y \geq 1$.

$y=5$	6	7	13	253	$2 \uparrow 8$	really huge
$y=4$	5	6	11	125	$2 \uparrow 7$	really huge
$y=3$	4	5	9	61	$2^{10^{20000}}$ about $2 \uparrow 6$	really huge
$y=2$	3	4	7	29	10^{20000} about $2 \uparrow 5$	really huge
$y=1$	2	3	5	13	65533, about $2 \uparrow 4$	$2 \uparrow 65536$
$y=0$	1	2	3	5	$13=2^{4}-3=2 \uparrow 3-3$	65533, about $2 \uparrow 4$
	$x=0$	$x=1$	$x=2$	$x=3$	$x=4$	$x=5$

Consider the mod-n version $\mathrm{B}[\mathrm{n}, \mathrm{x}, \mathrm{y}]$, where each step is reduced modulo n to the least nonnegative residue. That can be defined as follows.
$B(n, 0, y)=\bmod (y+1, n)$
$B(n, x, 0)=B(n, x-1,1)$
$B(n, x, y)=B(n, x-1, B(n, x, y-1))$) if $x \geq 1$ and $y \geq 1$.
Let $B^{\star}[n]$ be the $n-b y-\infty$ matrix where the $i ' t h$ column is $\{B(i, j), 0 \leq j \leq n-1\}$. For example the first eight columns ($i=0,1,2, \ldots, 7$) of $B^{\star}[13]$ are below. The bottom row is $B(13, i, 0)$; the top row is $B(13, i, 12)$.

Out $[=]=$| $j=12$ | 0 | 1 | 1 | 5 | 3 | 5 | 9 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $j=11$ | 12 | 0 | 12 | 1 | 2 | 9 | 9 | 9 |
| $j=10$ | 11 | 12 | 10 | 12 | 6 | 5 | 9 | 9 |
| $j=9$ | 10 | 11 | 8 | 11 | 5 | 9 | 9 | 9 |
| $j=8$ | 9 | 10 | 6 | 4 | 0 | 5 | 9 | 9 |
| $j=7$ | 8 | 9 | 4 | 7 | 1 | 9 | 9 | 9 |
| $j=6$ | 7 | 8 | 2 | 2 | 11 | 5 | 9 | 9 |
| $j=5$ | 6 | 7 | 0 | 6 | 9 | 9 | 9 | 9 |
| $j=4$ | 5 | 6 | 11 | 8 | 3 | 5 | 9 | 9 |
| $j=3$ | 4 | 5 | 9 | 9 | 2 | 9 | 9 | 9 |
| $j=2$ | 3 | 4 | 7 | 3 | 6 | 5 | 9 | 9 |
| $j=1$ | 2 | 3 | 5 | 0 | 5 | 9 | 9 | 9 |
| $j=0$ | 1 | 2 | 3 | 5 | 0 | 5 | 9 | 9 |
| | $i=0$ | $i=1$ | $i=2$ | $i=3$ | $i=4$ | $i=5$ | $i=6$ | $i=7$ |

The $i=6$ column has only 9 s , so that will hold for all subsequent columns. We call n "stable" if the columns of $B^{\star}[n]$ are eventually constant. Let $s(n)$ be the column index of the first constant column. So $s(13)$ is 6 . If the columns never become constant, then $s(n)=\infty$. Here are some s-values, where n starts at 1 and ends at 13.

$$
0,2,4,3,5,4,6,3,6,5,6,4,6
$$

Part (a) asks whether the columns always become constant. Part (b) asks if the number 4 occurs infinitely often as $s(n)$.

