1340. Modular Ackermann

Let s(n) be the number of steps for the mod-n Ackermann function to stabilize.

- (a) True or False: For every n, s(n) is finite.
- (b) How many values of n are there for which s(n) = 4?

Definitions. The Ackermann function A(x,y) (x, y nonnegative integers) is the classic example of a very fast-growing function:

A(0,0) = 1, A(1,1) = 3; A(2,2) = 7, A(3,3) = 61, $A(4,4) = 2^{(2^{(2^{(2^{(2^{(16)})})} - 3)}$, or about $10^{10^{10^{20000}}$. The definition follows and the table below shows the values (the UpArrow notation denotes repeated exponentiation: 2 UpArrow 4 is $2^{2^{(2^{(2^{(16)})})}}$.

$$A(0,y) = y+1$$

$$A(x,0) = A(x-1, 1)$$

A(x,y) = A(x-1, A(x, y-1)) if $x \ge 1$ and $y \ge 1$.

	y=5	6	7	13	253	2↑8	really huge		
-	y=4	5	6	11	125	2↑7	really huge		
	y=3	4	5	9	61	$2^{10^{20000}}$ about $2 \uparrow 6$	really huge		
	y=2	3	4	7	29	10^{20000} about $2 \uparrow 5$	really huge		
	y=1	2	3	5	13	65533, about 2↑4	2 ↑ 65536		
	y=0	1	2	3	5	$13 = 2^4 - 3 = 2 \uparrow 3 - 3$	65533, about 2↑4		
		x=0	x=1	x=2	x=3	<i>x</i> =4	x=5		

Out[•]=

Consider the mod-n version B[n,x,y], where each step is reduced modulo n to the least nonnegative residue. That can be defined as follows.

$$B(n,0,y) = mod(y+1, n)$$

$$B(n,x,0) = B(n,x-1,1)$$

$$B(n,x,y) = B(n, x-1, B(n,x, y-1)))$$
 if $x \ge 1$ and $y \ge 1$.

Let $B^*[n]$ be the n-by- ∞ matrix where the i'th column is $\{B(i,j), 0 \le j \le n-1\}$. For example the first eight columns (i = 0, 1, 2, ..., 7) of $B^*[13]$ are below. The bottom row is B(13, i, 0); the top row is B(13, i, 12).

	r								_
	j = 12	0	1	1	5	3	5	9	9
	j = 11	12	0	12	1	2	9	9	9
	j = 10	11	12	10	12	6	5	9	9
	j=9	10	11	8	11	5	9	9	9
	<i>j</i> =8	9	10	6	4	0	5	9	9
	<i>j</i> =7	8	9	4	7	1	9	9	9
	<i>j</i> =6	7	8	2	2	11	5	9	9
Out[•]=	<i>j</i> =5	6	7	0	6	9	9	9	9
	<i>j</i> =4	5	6	11	8	3	5	9	9
	j=3	4	5	9	9	2	9	9	9
	j=2	3	4	7	3	6	5	9	9
	j=1	2	3	5	0	5	9	9	9
	j=0	1	2	3	5	0	5	9	9
		i=0	i=1	i=2	i=3	i=4	i=5	i=6	i=7

The i = 6 column has only 9s, so that will hold for all subsequent columns. We call n "stable" if the columns of $B^*[n]$ are eventually constant. Let s(n) be the column index of the first constant column. So s(13) is 6. If the columns never become constant, then $s(n) = \infty$. Here are some s-values, where n starts at 1 and ends at 13.

Part (a) asks whether the columns always become constant. Part (b) asks if the number 4 occurs infinitely often as s(n).