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Abstract

Let S be a set of n distinct integers, and let f(S) be the number of
(unordered) pairs from S whose sum is a power of 2. Let g(n) be the
maximum of f(S) over all S. g¢(n) is the sequence A352178 on OEIS.
¢g(10) is known to be either 15 or 16. In this paper we prove that it
cannot be 16, thereby proving it is 15. We also prove a few impossibility
results for S, and use them to make conclusions about g(11) and g(12).

1 Introduction

Let S be a set of n distinct integers. Its associated graph G is the graph with
nodes labelled by the integers of S, and two nodes are adjacent if their values
sum to a power of 2. Let f(S) be the number of edges in G, or equivalently, the
number of (unordered) pairs from S whose sum is a power of 2. Let g(n) be the
maximum of f(S) over all S. The goal is to determine g(n) for all n, a problem
posed by Dan Ullman and Stan Wagon. In this paper we determine g(10), the
smallest unknown value in A352178.

It is a result by M. S. Smith (in an email to Neil Sloane) that G cannot contain a
4-cycle. The maximum number of edges in 4-cycle-free (or "square-free”) graph
with 10 nodes is 16, and there are two such graphs [1], shown below.

Figure 1: The two maximal square-free graphs on 10 nodes, from [1]. We shall
simply call them the left and right graphs.



¢(10) is known to be either 15 or 16, and our goal is to prove the impossibility
of 16, and therefore it must be 15.
As the two maximal square-free graphs on 10 vertices both contain a few 3-
cycles (or "triangles”), we will focus on the properties of these 3-cycles formed
by the integers of S.

2  3-Cycles

Let A, B, and C denote three integers in S that add up pairwise to powers of
2,i.e. A+ B=2", A+ C =2Y, and B+ C =2%. As A, B, and C are distinct,
then so are z, y, and z. From these 3 equations we obtain

A= 2171 4 2y71 _ 2271
B = 21:—1 _ 2y—1 + 22—1
O — 72171 4 2y71 4 2271

We must have x,y,z > 1 for A, B, and C to be integers. Without loss of
generality, we may assume that z >y > z, and hence A > B > 0> C.
Making the substitution c =z — 1, A=2 — 2z, and u =y — 2, we get

A=20(2 421 — 1)
B=27(2" -2 4+1)
C=27(=2 +2" +1)
We shall call these the A-form, B-form, and C-form, respectively.

3 The 3 Forms

If an integer has a representation in one of the above forms (with o > 0, A >
w > 0), it is not difficult to see that it is unique, via parity arguments.
Therefore if a number is in two triangles (which happens in both maximal
graphs), but uses the same form for both triangles, then the other two numbers
are the same in both triangles by the uniqueness of o, A and u, which contradicts
that the numbers in S are distinct. We also note that a number cannot have a
C-form and a different form, due to them having different signs.

The only possibility left to have a number be in two different triangles is for it
to be representable in A-form and B-form.

A by-product of the previous discussion is the following proposition:

Proposition 1. An associated graph cannot have three different triangles shar-
ing a single vertex.

In each form, we can factor out 2* and deduce from there the binary repre-
sentations of these forms as regular expressions: 107170* for A-forms, 170*10*
for B-forms, and —1*0110* for C-forms. Hence we have that for a number to
be both representable in A-form and B-form, it must be in the form 10%10*,
which is to say it equals 27(2% + 1) for some « > 2.

Seen as an A-form, we can conclude p = 1, A = a. On the other hand, as a
B-form, we conclude A = 4+ 1 = o + 1. We will substitute these values in for
the triangles.



4 Impossibility of The Left Graph

Let us turn our attention to the bottom middle triangle in Figure 2. The vertices
i and j are both in two separate triangles, hence they are of the form 27(2% +1)
and 27(2° + 1). However, as they are adjacent, this implies that their sum is a
power of 2, which is impossible, since a, 8 > 2, and as such the second-to-last
bit in (2% 4+ 1) + (2 4+ 1) is 1 (different from the leading bit).

Figure 2: The left graph [1].

From the above, we arrive at the following proposition:

Proposition 2. If a graph contains three triangles T, To, and T3 such that Ty
shares a node with Ty and a different node with T3, then it is not the associated
graph of a set S.

5 Impossibility of The Right Graph

For the right graph, we point out the two subgraphs where each has two triangles
sharing a node; the subgraph of {7, a, b, ¢, d}, and the subgraph of {j, e, f, g,h}.
In such a subgraph, the ¢ must be the same for all 5 nodes, due to the shared
node and the uniqueness of o.

Figure 3: The right graph [1].



Setting aside the 27 factors, the below figure shows the values of each of the
nodes for the given A, where the center node is considered in one triangle as an
A-form, and considered as a B-form in the other.

The reader can verify that indeed, each adjacent pair adds to a power of 2.

Assume that the highest power of 2 dividing the integers in the top half of Fig-
ure 3 is 29, and for the bottom half it is 27. Without loss of generality, assume
o > 7. Then we may divide the integers of the set S by 27, and the numbers
that were (un)adjacent will remain (un)adjacent in the new graph. So we may
assume that the bottom half has odd numbers.
There is 1 negative number among each of the pairs {a,b}, {c,d}, {e, f}, and
{g,h}. Each of these negative numbers is adjacent to a number from the other
half. However, they cannot be adjacent to each other, as the sum of two nega-
tives cannot be a power of 2. So they can only be adjacent to positive numbers.
From here, we have only two possible configurations, based on which negative
connects to which positive, shown below
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We will split into two cases: o = 0, and ¢ > 0. The former case essentially
has only one configuration, as the two configurations only differ by swapping A
and p. The latter case can only have 1 as a possible sum for even (top half) and
odd (bottom half) numbers. We remind the reader that A, p > 2, which we’ll
use in the coming subsections.

5.1 Case: =0

As 2* — 1 and 1 — 27 are adjacent, this implies 2* — 2° is a power of 2, so the
only possibility is A = p + 1. But —2* + 3 and 2° — 1 are adjacent. Summing
them and substituting A = p + 1, we get 2 — 2, necessarily a power of 2. But
this implies p = 0, which is false, as p > 2.

5.2 Case: 0 >0
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Figure 4: The first configuration.
Nodes b and g are adjacent in this configuration, therefore:
2020 -1+ (1-2)=1 = 272" - 1)=2" = 2 ~1=1 = A=1

a contradiction, as \ > 2.
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Nodes b and g are adjacent in this configuration, therefore:
29(3x20—1)+(1-2°) =1 = 29(3x2*—1) =2 — 3x2*~1=1 = 3x2* =2

i.e. 3 divides 2, a contradiction.

6 Conclusion

There were only two possible square-free graphs on 10 nodes with 16 edges, and
we’ve shown that they are both impossible to have as associated graphs. And 15
edges is possible, using {—7,—5,—-3,—1,3,5,7,9,11,23}. Therefore ¢g(10) = 15.
We’ve also shown some impossibility results for associated graphs. These can be
used on the four 11-node graphs in [1], though we could not find a source with
the other square-free seven graphs to study them. We can also use the results
on the three 12-node graphs in [1], proving g(12) < 21, and so it is either 19 or
20, as per the bounds in the OEIS page of A352178.
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