login
a(n) = Sum_{k=0..n-1} (-1)^k * binomial(n,k)^2 * (n-k-1)!.
1

%I #7 Mar 09 2022 10:40:56

%S 0,1,-3,2,-6,-1,-5,132,1624,17145,174509,1789842,18659146,196678143,

%T 2057524963,20460314396,171030108768,529697015489,-27050118799923,

%U -1079945984126798,-30289996673371254,-765129844741436785,-18575997643525737477,-444653043972658034044

%N a(n) = Sum_{k=0..n-1} (-1)^k * binomial(n,k)^2 * (n-k-1)!.

%F Sum_{n>=0} a(n) * x^n / (n!)^2 = BesselJ(0,2*sqrt(x)) * (Ei(x) - log(x) - gamma).

%t Table[Sum[(-1)^k Binomial[n, k]^2 (n - k - 1)!, {k, 0, n - 1}], {n, 0, 23}]

%t nmax = 23; Assuming[x > 0, CoefficientList[Series[BesselJ[0, 2 Sqrt[x]] (ExpIntegralEi[x] - Log[x] - EulerGamma), {x, 0, nmax}], x]] Range[0, nmax]!^2

%o (PARI) a(n) = sum(k=0, n-1, (-1)^k * binomial(n,k)^2 * (n-k-1)!); \\ _Michel Marcus_, Mar 06 2022

%Y Cf. A002741, A009940, A352149.

%K sign

%O 0,3

%A _Ilya Gutkovskiy_, Mar 06 2022