%I #33 Apr 09 2022 11:10:25
%S 0,1,2,3,4,10,11,24,36,44,77,100,141,363,1000,1095,10000,100000,
%T 1000000,10000000,100000000,1000000000,10000000000,100000000000,
%U 1000000000000,10000000000000,100000000000000,1000000000000000,10000000000000000
%N Integers m such that nonzero digits of A000217(m) are all the same.
%F Conjecture: a(n) = 10^(n-13) for n >= 17.
%t (Sqrt[8 # + 1] - 1)/2 & /@
%t Sort[Select[
%t Flatten[Outer[Times,
%t Table[FromDigits[IntegerDigits[n, 2]], {n, 2^22 - 1}],
%t Range[9]]], IntegerQ[Sqrt[8 # + 1]] &]]
%o (PARI) isok(m) = #Set(select(x->(x>0), digits(m*(m+1)/2))) <= 1; \\ _Michel Marcus_, Mar 06 2022
%o (Python)
%o from itertools import count, islice
%o from sympy import integer_nthroot
%o def A352148_gen(): # generator of terms
%o yield 0
%o for l in count(0):
%o for d in range(1,10):
%o for m in range(2**l,2**(l+1)):
%o a, b = integer_nthroot(8*d*int(bin(m)[2:])+1,2)
%o if b:
%o yield (a-1)//2
%o A352148_list = list(islice(A352148_gen(),10)) # _Chai Wah Wu_, Apr 08 2022
%Y Cf. A000217, A352057 (resulting triangular numbers).
%K nonn,base,more
%O 1,3
%A _Steven Lu_, Mar 06 2022
%E a(25)-a(27) from _Chai Wah Wu_, Apr 08 2022
%E a(28)-a(29) from _Chai Wah Wu_, Apr 09 2022