|
|
A351874
|
|
Number of subsets of {1,2,...,n} such that any pair of elements do not differ by 1, 3, or 4.
|
|
1
|
|
|
1, 2, 3, 5, 7, 9, 12, 16, 23, 33, 47, 66, 91, 126, 175, 245, 344, 482, 674, 940, 1311, 1830, 2557, 3575, 4997, 6982, 9752, 13620, 19025, 26579, 37136, 51885, 72487, 101264, 141463, 197624, 276088, 385711, 538860, 752810, 1051698, 1469249, 2052584, 2867532
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) = a(n-1) + a(n-5) + a(n-7) + delta(n,0) + delta(n,1) + delta(n,2) + 2*delta(n,3) + 2*delta(n,4) + delta(n,5) + delta(n,6), a(n<0) = 0.
G.f.: (1 + x + x^2 + 2*x^3 + 2*x^4 + x^5 + x^6)/(1 - x - x^5 - x^7).
|
|
EXAMPLE
|
When n = 5, the 9 subsets are {}, {1}, {2}, {3}, {4}, {5}, {1,3}, {2,4}, and {3,5}.
|
|
MATHEMATICA
|
CoefficientList[Series[(1 + x + x^2 + 2x^3 + 2x^4 + x^5 + x^6)/(1 - x - x^5 - x^7), {x, 0, 45}], x]
|
|
CROSSREFS
|
Other sequences giving numbers of restricted combinations: A000045, A006498, A006500, A031923, A000930, A130137, A263710, A079972, A224809, A351873, A224810, A224815, A003269, A317669, A177485, A121832, A224808, A003520, A224811, A005708, A224812, A005709, A224813, A005710.
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|