The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A351777 Expansion of e.g.f. 1/(1 + 2*x*exp(x)). 2

%I #15 Feb 06 2024 16:20:46

%S 1,-2,4,-6,-8,150,-972,3682,6256,-289746,3300460,-21071622,-27876312,

%T 3156947014,-53217341660,494232431250,175171749088,-113735274256290,

%U 2613309376750812,-32653995355358678,36013529538641560,10227377502146048118,-305630239215263764076

%N Expansion of e.g.f. 1/(1 + 2*x*exp(x)).

%F a(n) = n! * Sum_{k=0..n} (-2)^(n-k) * (n-k)^k/k!.

%F a(0) = 1 and a(n) = -2 * n * Sum_{k=0..n-1} binomial(n-1,k) * a(k) for n > 0.

%t With[{nn=30},CoefficientList[Series[1/(1+2x Exp[x]),{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, Feb 06 2024 *)

%o (PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(1+2*x*exp(x))))

%o (PARI) a(n) = n!*sum(k=0, n, (-2)^(n-k)*(n-k)^k/k!);

%o (PARI) a(n) = if(n==0, 1, -2*n*sum(k=0, n-1, binomial(n-1, k)*a(k)));

%Y Column k=2 of A351776.

%Y Cf. A351762.

%K sign

%O 0,2

%A _Seiichi Manyama_, Feb 19 2022

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 00:20 EDT 2024. Contains 372900 sequences. (Running on oeis4.)