OFFSET
1,2
COMMENTS
Sum_{k>0} sin(k^alpha) / (k^beta) with 0 < alpha < 1 is convergent if beta > max(alpha, 1-alpha); the constant of this sequence corresponds to the case alpha = 1/2 and beta = 1 (see Arnaudiès).
Consequence: Sum_{k>0} sin(k^(1/m)) / k converges for any positive integer m.
The sequence converges slowly.
REFERENCES
J. M. Arnaudiès, P. Delezoide et H. Fraysse, Exercices résolus d'Analyse du cours de mathématiques - 2, Dunod, 1993, Exercice 11, pp. 316-319.
LINKS
Mathematics Stack Exchange, Convergence of Sum_{k=0..infinity} sin(sqrt(k)) / k.
EXAMPLE
1.715671794709...
PROG
(PARI) default(realprecision, 100); sumalt(k=0, sum(j=1+floor(k^2*Pi^2), floor((k+1)^2*Pi^2), sin(sqrt(j))/j)) \\ Vaclav Kotesovec, May 21 2022
CROSSREFS
KEYWORD
AUTHOR
Bernard Schott, May 20 2022
EXTENSIONS
More digits from Stefano Spezia, May 21 2022
STATUS
approved