%I #11 Mar 27 2022 22:54:30
%S 887,2287,2311,2383,2939,3583,3659,3823,4451,4519,5051,5743,6947,7207,
%T 7643,7687,8863,8963,9323,12323,13763,13883,14387,15139,15227,15443,
%U 15467,15859,16427,17491,20483,20507,22051,23059,23251,24859,25523,28403,29587,29723
%N Discriminants of imaginary quadratic fields with class number 29 (negated).
%C Sequence contains 83 terms; largest is 166147.
%C The class group of Q[sqrt(-d)] is isomorphic to C_29 for all d in this sequence.
%H Andy Huchala, <a href="/A351667/b351667.txt">Table of n, a(n) for n = 1..83</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ClassNumber.html">Class Number</a>
%o (Sage)
%o ls = [(QuadraticField(-n, 'a').discriminant(), QuadraticField(-n, 'a').class_number()) for n in (0..10000) if is_fundamental_discriminant(-n) and not is_square(n)];
%o [-a[0] for a in ls if a[1] == 29]
%Y Cf. A006203, A013658, A014602, A014603, A046002-A046020, A046125, A056987, A351664-A351666.
%K nonn,fini,full
%O 1,1
%A _Andy Huchala_, Mar 24 2022