login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array T(n, k) read by antidiagonals, n, k >= 0; T(n, k) is the number of distinct values in the set { T(i, j) with 0 <= i <= n and 0 <= j <= k and gcd(n-i, k-j) = 1 }.
0

%I #7 Feb 19 2022 13:46:07

%S 0,1,1,1,2,1,1,3,3,1,1,3,3,3,1,1,3,4,4,3,1,1,3,4,3,4,3,1,1,3,5,5,5,5,

%T 3,1,1,3,4,5,4,5,4,3,1,1,3,5,5,6,6,5,5,3,1,1,3,4,5,6,5,6,5,4,3,1,1,3,

%U 5,6,6,7,7,6,6,5,3,1,1,3,4,5,6,7,6,7,6,5,4,3,1

%N Square array T(n, k) read by antidiagonals, n, k >= 0; T(n, k) is the number of distinct values in the set { T(i, j) with 0 <= i <= n and 0 <= j <= k and gcd(n-i, k-j) = 1 }.

%C In other words, T(n, k) gives the number of distinct values in the rectangle with opposite corners (0, 0) and (n, k) visible from (n, k).

%F T(n, k) = T(k, n).

%F T(n, k) <= A049687(n, k).

%e Array T(n, k) begins:

%e n\k| 0 1 2 3 4 5 6 7 8 9 10 11

%e ---+----------------------------------------

%e 0| 0 1 1 1 1 1 1 1 1 1 1 1

%e 1| 1 2 3 3 3 3 3 3 3 3 3 3

%e 2| 1 3 3 4 4 5 4 5 4 5 4 5

%e 3| 1 3 4 3 5 5 5 5 6 5 6 6

%e 4| 1 3 4 5 4 6 6 6 6 7 6 7

%e 5| 1 3 5 5 6 5 7 7 8 8 8 8

%e 6| 1 3 4 5 6 7 6 8 8 8 8 8

%e 7| 1 3 5 5 6 7 8 7 9 9 9 9

%e 8| 1 3 4 6 6 8 8 9 8 10 10 11

%e 9| 1 3 5 5 7 8 8 9 10 9 11 11

%e 10| 1 3 4 6 6 8 8 9 10 11 10 12

%e 11| 1 3 5 6 7 8 8 9 11 11 12 11

%o (PARI) { T = matrix(M=13,M); for (d=1, #T, for (k=1, d, n=d+1-k; w=0; for (i=1, n, for (j=1, k, if (gcd(n-i, k-j)==1, w=bitor(w, 2^T[i,j])))); print1 (T[n,k] = hammingweight(w)", "))) }

%o (Python)

%o from math import gcd

%o from functools import cache

%o @cache

%o def T(n, k):

%o return len(set(T(i, j) for i in range(n+1) for j in range(k+1) if gcd(n-i, k-j) == 1))

%o def auptodiag(maxd):

%o return [T(i, d-i) for d in range(maxd+1) for i in range(d+1)]

%o print(auptodiag(12)) # _Michael S. Branicky_, Feb 13 2022

%Y Cf. A049687.

%K nonn,tabl

%O 0,5

%A _Rémy Sigrist_, Feb 13 2022