login
a(n) is the number of primitive triangulations of a 9 X n rectangle.
8

%I #7 Feb 14 2022 16:10:54

%S 48620,11224598424,4140106747178292,1835933384812941453312,

%T 913036902513499041820702784,484772512167266688498399632918196,

%U 269621109753732518252493257828413137272,155023302820254133629368881178138076738462112,91376512409462235694151119897052344522006298310908

%N a(n) is the number of primitive triangulations of a 9 X n rectangle.

%H S. Yu. Orevkov, <a href="https://arxiv.org/abs/2201.12827">Counting lattice triangulations: Fredholm equations in combinatorics</a>, arXiv:2201.12827 [math.CO], 2022. See Table 6, p. 8.

%Y Cf. A082640 (m X n rectangle).

%Y Cf. A351480, A351481, A351482, A351483.

%Y Cf. A351484, A351485, A351486, A351487.

%K nonn

%O 1,1

%A _Stefano Spezia_, Feb 12 2022