login
a(n) is the number of primitive triangulations of an 8 X n rectangle.
8

%I #9 Feb 14 2022 04:07:42

%S 12870,698607816,58591381296256,5831528022482629710,

%T 645855159466371391947660,76083336332947513655554918994,

%U 9369363517501208819530429967280708,1191064812882685539785713745400934044308,155023302820254133629368881178138076738462112,20527337238769032315796332007167102984745417344046

%N a(n) is the number of primitive triangulations of an 8 X n rectangle.

%H S. Yu. Orevkov, <a href="https://arxiv.org/abs/2201.12827">Counting lattice triangulations: Fredholm equations in combinatorics</a>, arXiv:2201.12827 [math.CO], 2022. See Table 5, p. 8.

%Y Cf. A082640 (m X n rectangle).

%Y Cf. A351480, A351481, A351482, A351483.

%Y Cf. A351484, A351485, A351486, A351488.

%K nonn

%O 1,1

%A _Stefano Spezia_, Feb 12 2022