login
a(n) is the number of primitive triangulations of a 7 X n rectangle.
8

%I #7 Feb 14 2022 04:07:17

%S 3432,43936824,839660660268,18792896208387012,464476385680935656240,

%T 12169409954141988707186052,332633840844113103751597995920,

%U 9369363517501208819530429967280708,269621109753732518252493257828413137272,7880009979020501614060394747170100093057300,233031642883906149386619647304562977586311372556

%N a(n) is the number of primitive triangulations of a 7 X n rectangle.

%H S. Yu. Orevkov, <a href="https://arxiv.org/abs/2201.12827">Counting lattice triangulations: Fredholm equations in combinatorics</a>, arXiv:2201.12827 [math.CO], 2022. See Table 4, p. 7.

%Y Cf. A082640 (m X n rectangle).

%Y Cf. A351480, A351481, A351482, A351483.

%Y Cf. A351484, A351485, A351487, A351488.

%K nonn

%O 1,1

%A _Stefano Spezia_, Feb 12 2022