login
a(n) is the number of primitive triangulations of a 6 X n rectangle.
8

%I #7 Feb 14 2022 04:01:34

%S 924,2801708,12244184472,61756221742966,341816489625522032,

%T 1999206934751133055518,12169409954141988707186052,

%U 76083336332947513655554918994,484772512167266688498399632918196,3131521959869770128138491287826065904,20443767611927599823217291769468449488548

%N a(n) is the number of primitive triangulations of a 6 X n rectangle.

%H S. Yu. Orevkov, <a href="https://arxiv.org/abs/2201.12827">Counting lattice triangulations: Fredholm equations in combinatorics</a>, arXiv:2201.12827 [math.CO], 2022. See Table 3, p. 7.

%Y Cf. A082640 (m X n rectangle).

%Y Cf. A351480, A351481, A351482, A351483.

%Y Cf. A351484, A351486, A351487, A351488.

%K nonn

%O 1,1

%A _Stefano Spezia_, Feb 12 2022