login
Decimal expansion of log_2(lim_{n->infinity} f(3, n)^(1/(3*n))), where f(m, n) is the number of primitive lattice triangulations of m X n rectangle.
8

%I #7 Feb 14 2022 04:02:10

%S 2,0,8,3,8,4,9,7,0,9,7,2,1,0,2,3,2,0,8,2,2,4,2,1,9,2,8,9,4,9,6,1,7,0,

%T 1,3,9,6,4,8,5,1,3,4,2,3,2,4,9,5,5,2,1,3,0,7,9,9,0,5,9,9,1,8,5,5,1,7,

%U 2,9,0,6,9,2,8,1,8,0,5,2,5,1,8,6,6,5,0,8,8

%N Decimal expansion of log_2(lim_{n->infinity} f(3, n)^(1/(3*n))), where f(m, n) is the number of primitive lattice triangulations of m X n rectangle.

%H S. Yu. Orevkov, <a href="https://arxiv.org/abs/2201.12827">Counting lattice triangulations: Fredholm equations in combinatorics</a>, arXiv:2201.12827 [math.CO], 2022. See Theorem 2, p. 2.

%e 2.0838497097210232082242192894961701...

%Y Cf. A082640.

%Y Cf. A351480, A351481, A351482.

%Y Cf. A351484, A351485, A351486, A351487, A351488.

%K nonn,cons

%O 1,1

%A _Stefano Spezia_, Feb 12 2022